
 Advanced search

Linux Journal Issue #60/April 1999

Focus

Network Computing by Marjorie Richardson

Features

Corel's NetWinder by Marcel Gagné
A review of this networking computer from Canada.

FlowNet: An Inexpensive High-Performance Network by Erann Gat
and Mike Ciholas

A look at current state-of-the-art network hardware and
protocols with a solution for the slow network problem.

Using Linux with Network Computers by Brian Vincent
A look at one man's experiences setting up Linux as an
application and boot server for Neoware network computers.

Network Administration with AWK by Juergen Kahrs
If you are looking for an easy way to access your network
services, AWK scripting provides the means.

Forum

Linux Training by Scott Schad
A report on Caldera's new Linux Administration Course.

Blender by Ben Crowder
No, it is not that thing you use to stir up food in your kitchen—it
is a hot new state-of-the-art 3-D modeler.

LJ Interviews John Ousterhout by Marjorie Richardson
LJ talks to the creator of Tcl/Tk about the port of TclPro to Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/060/3339.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3288.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3293.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/2649.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3132.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3259.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3140.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3314.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3314.html

Linux Certification for the Software Professional by P. Tobin Maginnis
A discussion of the need for certification and a proposal from
Sair, Inc. for a Linux certificate program.

Reviews

Arkeia by Charles Curley
Xi Graphics MaXimum cde/OS v1.2.3, Executive Edition by Jeff Alami
Linux For Dummies Quick Reference, 2nd Edition by Harvey
Friedman
Conix 3-D Explorer by Michael J. Hammel
Perl Cookbook by James Lee

Columns

Take Command grep: Searching for Words by Jan Rooijackers
grep: Searching for Words A command to help you find a specific
word or a sentence in a file.

Kernel Korner Linux 2.2 and the Frame-Buffer Console by Joseph
Pranevich

Linux 2.2 and the Frame-Buffer Console Wondering about the
new frame-buffer features in the kernel? Mr. Pranevich gives us
the scoop.

At the Forge Writing Modules for mod_perl by Reuven M. Lerner
The Cutting Edge Security Research Laboratory and Education
Center by Joseph Pranevich

Security Research Laboratory and Education Center The world-
class research center at Purdue University is getting serious
about cutting edge development of security related projects.

Linux Apprentice Windows/Linux Dual Boot by Vince Veselosky
Windows/Linux Dual Boot Don't want to give up Windows while
you learn Linux? Here's how to use both on the same machine

Focus on Software by David A. Bandel
Take Command Good Ol' sed by Hans de Vreught

Good Ol' sed A nice little command to help you modify files.

Departments

Letters
More Letters to the Editor

From the Publisher A Look to the Future by Phil Hughes
New Products
Best of Technical Support

Strictly On-line

DECnet Network Protocol
This article contains information on how to use and configure
available DECnet software as well as information on how the
kernel code works.

The Xxl Spreadsheet Project

https://secure2.linuxjournal.com/ljarchive/LJ/060/3124.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3166.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3249.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/2981.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3267.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3238.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/2384.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3278.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3351.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3175.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3175.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3192.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3322.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/2629.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3338.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/lte60more.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3367.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3342.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3341.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3129.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3186.html

This paper is a general presentation of the Xxl project and of its
latest version, describing the choices that drove the design of
Xxl and its main charactertistics.

Network Programming with Perl
Using Perl to make network task is easy—here's how.

Linux in Enterprise Network Management
Providing Network information to customers on an intranet
saves both time and money for this international chemical
company.

Alphabet Soup: The Internationalization of Linux, Part 2
Mr. Turnbull takes a look at the problems faced with different
character sets and the need for standardization.

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3256.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3327.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

From the Editor

Marjorie Richardson

Issue #60, April 1999

Linux's biggest strengths has always been as an operating system for all types
of servers: e-mail, web, boot, you name it. This makes it ideal for use in
networking computers.

Network computing has been a hot topic for some time now, so it should come
as no surprise that we included it in our 1999 editorial calendar. Network
computers provide Internet/intranet services at a fraction of the cost of a PC.
With the popularity of the World Wide Web, the network computer's time has
come—companies dealing in network computers show high performance on
the New York Stock Exchange.

One of Linux's biggest strengths has always been as an operating system for all
types of servers: e-mail, web, boot, you name it. This makes it ideal for use in
networking computers. IGEL's Etherminal proved Linux's worth as a thin client
back in 1994 and has kept on proving it ever since. Last year, Corel's NetWinder
joined the ranks.

Whether you want to learn more about using Linux in your network, how to
easily access your network services or how to speed up your network, this
month we have the articles you need. In addition to the features listed below,
we also have two articles on our web site (see “Strictly On-line” in the Table of
Contents): one explaining the DECnet protocol and one providing Perl scripts
for accessing your network. Also on the web is an article about how one
international company is using Linux for network management.

Along with these articles on the web site is the second part of last month's
internationalization feature by Stephen Turnbull, “Alphabet Soup”. In this
follow-up, he discusses standardization of character sets—don't miss it.

“Strictly On-line” articles can be found at http://www.linuxjournal.com/issue60/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Hardware News

First it was Netscape then the major database providers, and now major
hardware vendors are jumping on the Linux bandwagon. At the end of January,
Hewlett-Packard Co. and Silicon Graphics, Inc. both announced they would be
providing Linux as an option on their computers with Intel chips. Rumor has it
that Compaq, IBM and Dell will be following suit. Even Apple has said they will
make Linux an option. These companies are not doing this to become popular
with the open-software crowd—they are doing it to make money. They have
seen that a market clearly exists and are taking advantage of that fact. More on
making money with open-source software will be found in our June Enterprise
Solutions supplement.

Marjorie Richardson, Editor

Featured Articles

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3339s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Product Review: Corel's NetWinder

Marcel Gagné

Issue #60, April 1999

A review of this networking computer from Canada.

• Manufacturer: Corel Computer

• URL: http//www.corelcomputer.com/

• Price: Varies with model, see web site

• Reviewer: Marcel Gagné

Corel's NetWinder has to be one of the coolest computers I've ever seen. The
slick little grey box makes me think of those cream-filled half-moon cakes with
a little chunk taken off the edges. Sitting in its green plastic base, it beckons
with a single deep red window up front and two status lights telling you
everything is fine. It is about the size of my notebook, but unlike my notebook,
it weighs next to nothing.

My time with the NetWinder was up a few days ago, but I have been hanging on
to it due to problems in scheduling a drop-off time with the Corel sales
representative. On my first attempt to deliver the unit, I stopped off at a
customer's site, NetWinder in hand. It took an hour before I was allowed to
leave again, as everybody in the office had to get a look. “That's a computer?”
was heard time and again, as was “And it has what inside?” and “Tell me again
what it can do?” If nothing else, the NetWinder gets looks. Luckily, there's more
here than just looks.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. The NetWinder fits into any decor!

Specs

The NetWinder is based on a 275MHz StrongARM SA-110 RISC processor which
delivers 250 MIPS. It comes with 32 or 64MB of RAM and a 2, 4 or 6GB disk.
There are two Ethernet interfaces, one 10 and one 10/100 fast Ethernet port. It
draws 15 watts from its power brick, about the equivalent of a couple of night
lights. The NetWinder WS also comes loaded with Perl for CGI scripting, the
Apache web server, FTP, TELNET and DNS services. Also included are
multimedia support, a 16-bit stereo sound card and 2MB SVGA/XVGA video.

The unit I reviewed is actually a DM demo. That translates to “a little bit of WS,
DM, GS and LC all rolled into one”. Its OS version is based on Red Hat 4.2 with
some Corel extensions. By the time you read this review, NetWinder will come
preloaded with Red Hat 5.1.

A few different configurations are available. At this moment, there are five
NetWinder configurations. The WS (Web Server) and the DM (Development
Machine) are currently shipping. The LC (Linux Computer) should be out by the
time you read this; I was told “in time for Christmas 1998”. The other two
models, the RM (Rack Mount) and GS (Group Server), are expected in early
1999. Pricing and configuration options are available from the Corel Computer
web site at http://www.corelcomputer.com/. The open source software and
updates are available at http://www.netwinder.org/.

The Roundup

The WS is designed to be an “out of the box” web server. Small ISPs and
corporate intranets or web sites are the most likely candidates for the WS.

The DM is aimed at the software designer and comes with a suite of
development and programming tools. It is primarily for Corel NetWinder
project developers.

The LC is seen as a business or enterprise desktop client, although I also see
this as potentially quite attractive to the home user looking for a robust
alternative to running MS Windows. It comes with X, the KDE windows
environment, Netscape Communicator and WordPerfect 8. Supporting many
client/server models, the LC comes with Sun's Java VM, a Citrix ICA client to
access 32-bit MS Windows applications and good old terminal access.

For the workgroup environment, Corel offers the GS. Designed as a local
enterprise server, the GS offers e-mail services, HTML authoring, discussion
groups, and document management and indexing functionality.

Finally, there's the RM. This NetWinder will appeal to larger ISPs. Each RM can
accommodate two NetWinders in the space of a single rack unit. That means a
possible 80 NetWinders in a standard rack. Each RM is designed to be hot
swappable from its partner. One from each pair can be removed without
powering down the other unit.

First Impressions

I decided to review this unit while leaning toward the WS model, a more likely
choice for ISPs and corporate intranets. When I got my NetWinder home, I
plugged the unit in, hooked up the included mouse and keyboard and plugged
in a 15-inch Digital SVGA monitor. The NetWinder does not come with a
monitor, because in the case of the WS, Corel imagines the unit running in the
background without being looked at. After all, it is designed to be a server and
can be administered through a web interface. Personally, I can imagine lots of
people wanting one of these on their desktops.

After a few seconds, I heard little start-up tones, “Too-loo-toong!”, followed by a
strange, childlike voice saying, “Welcome to NetWinder”. (I later found out that
this is one of the developer's children. The voice is kind of cute.) Next, I logged
in, as per the tiny (not much more than a dozen pages) user's manual that
came with it, as I was anxious to get started. I completely ignored the part
about “setting it up for your network”.

I typed startx and was greeted by a bright, beautiful KDE desktop with Corel's
logo floating on a black background. I flipped through the four virtual desktops,
each with a different background. Number three, with its stone wall image as
the background, nearly blew me away; the brilliant definition begged me to
reach out and touch it in order to convince myself it wasn't real. Corel has put
nice video into their NetWinders. This was actually the first time I had seen the
KDE desktop, and I was so impressed with it that I now run it on my Dell XPi
notebook. KDE is not included on the WS, but I couldn't resist playing with all
the toys on my DM.

I wandered around the desktop, played a couple of hands of poker, and finally
dragged myself back to writing this review. To set the machine up for my
network, I plugged the 10Mbps port into a free port on the hub, typed netconfig

and modified the address to fit in to my 192.168 existing class C. Then, I used
Netscape to access the NetWinder from my Dell notebook running Red Hat 5.2.

Figure 2. So simple, even Natika can use it.

WebFront & Administration

Right away, I was presented with WebFront, Corel's administrative interface for
the WS. It took me awhile to figure out how to log in to the administration
utility. After chasing through some of the CGI scripts under the /admin
directory, I found a reference to /usr/bin/htpasswd.sh which apparently you
must run at least once in order to get WebFront to realize your admin user is
legit. This script creates the .htpasswd file.

WebFront is a browser-based tool that makes it possible to administer your
NetWinder through a few simple forms. You can add, delete or modify users
and groups through the interface. The clean, simple interface also serves up
statistics on your NetWinder's performance in a graphical form, giving you
glimpses of your web site's activity over different time scales.

To get a feel for its performance, I uploaded a few web sites that were done in
Microsoft FrontPage. The transfer was very fast, a testament to the NetWinder's
zippy little combination of processor and network architecture. I did a couple of
these, one for our SF magazine TransVersions and another for a customer's
intranet. Both sailed by faster than the “time to go” in FrontPage could keep up.
What it estimated would take three plus minutes flew past in less than ten
seconds.

Access to the pages was very fast. I fired up Netscape and as fast as I could click
links, pages appeared in my browser. It was almost disconcerting. My local

Pentium-powered Linux system, which we use as our corporate gateway/e-mail
server/development machine, seemed to crawl in comparison. I was starting to
get a touch of server envy.

Corel benchmarks with 16 clients connected to the NetWinder at 70 requests
per second or nearly 350,000 bytes per second. You can expect as many as 150
concurrent requests per second, depending on client load.

Figure 3. The author and his NetWinder

A Few Bumps in the Road

My experience wasn't all roses. One of the things my company does regularly is
set up Internet gateway, e-mail server, firewall, dial-on-demand combination
systems that give customers inexpensive access to the Internet. We use PPP
and masquerading to quickly link up a small office for transparent access. I
decided to try this with the NetWinder.

Using the supplied netconfig, I found no option for modifying the PPP interface,
so I created one using the Red Hat netcfg utility and tried to activate it. A
message to the console informed me, “Sorry—this system lacks PPP kernel
support”. No problem, I thought. I'm a UNIX guy. I can recompile the kernel with
PPP support and be on my way. It turns out I was mistaken. There is no kernel
source on the system, so PPP is impossible at this time.

Another thing I found disconcerting was the lack of an “off” switch. Call me
foolish, call me irresponsible, but I find the fact that you can't shut down the
machine distressing. While I realize you'll want your network gateway to stay up
forever, I'm used to powering down my system every once in a while. If you
want to shut down the NetWinder, you can use the standard shutdown

command and wait for the “System halted” prompt before disconnecting power
by pulling the power cord. That's right. You disconnect power, rather than
turning it off. Even then, the FAQ from the netwinder.org site says you should

not power down. The NetWinder has no battery for backup of its system clock.
What it does have is a “big capacitor” that will hold a charge for about two days
—any longer and you may need to reset your clock. When I got my NetWinder
for evaluation, it had been off for some time and seemed to think we were
already in the next millennium.

One other thing I will admit is fairly minor. I find the fan a bit loud, which is silly
since the NetWinder is still quieter than my usual server. Without the hum of
the power supply, the disk churning away and all the other noises one usually
expects from their computer, the NetWinder's little fan seems, well, loud—
bizarre.

A little later, I wrote up a small list of “would-be-nices” to pass along to Corel. I'd
like some kind of database. The freeware Postgres would be enough to make
me happy. I'd also like that PPP support, a built-in fax modem and the source
code so I could hack my kernel when I felt the need to.

Corel Responds

The next day, I called Corel's tech support engineers and discussed this. They
told me that in early 1999, NetWinder would have PPP support and should
include a V.90 modem for access. This pleased me very much. Right now, the
NetWinder is designed to sit behind a router with one interface configured for
the internal network and the other (most likely the 10 Mbps interface) hooked
up to the outside world. This makes it a winner with small ISPs and corporate
intranets.

The Corel engineers have already considered many of these things. After
chatting with them, I was told that future NetWinders would include full Red
Hat distributions which should take care of most of my software concerns. They
have some other cool ideas as well. Corel intends to offer customized
NetWinders using swappable daughter cards; some would come with ultra-
wide SCSI to plug into RAIDs, others with ISDN. Corel is keeping an open mind.

The LC was out at the end of 1998. The WS and DM are available now. Corel is
also looking into a TC or thin client. It would run a core Linux OS and take
everything else from the network. Because it will be essentially diskless (OS on
board), this NetWinder will be completely silent; it wouldn't even need a fan.

Ah, yes, the fan—Corel also thinks the fan is loud and is currently working with
different designs to make things quieter.

Final Impressions

The NetWinder seems like a good bet and I'm going to keep a close eye on how
this product plays out. What you need to do is decide which NetWinder will suit
your needs. In order to satisfy my current customer's needs, I'd most likely turn
to the GS when it becomes available.

The NetWinder is small and fast and its power consumption is minimal. It looks
slick. Best of all, NetWinder runs on Linux.

Marcel Gagné lives in the mythical city of Mississauga, Ontario. Besides being a
space alien, adventurer, pilot, magician and international man of mystery, he is
president of Salmar Consulting Inc., a systems integration and network
consulting firm. He also writes science fiction and fantasy, and edits
TransVersions, a science fiction, fantasy and horror magazine. He has loved
UNIX and all its flavors for over 14 years now and will even admit it in public. He
can be reached via e-mail at mggagne@salmar.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

FlowNet: An Inexpensive High-Performance Network

Erann Gat

Mike Ciholas

Issue #60, April 1999

A look at current state-of-the-art network hardware and protocols with a
solution for the slow network problem.

We have been using Linux to develop a new high-speed network we call
FlowNet. This project has been a “virtual garage” operation, involving only two
people, one in California and the other (at various times) in Massachusetts,
Pennsylvania and Indiana. We transferred designs and code over the Internet
and hardware via Federal Express. The result is a unique network that
combines the best features of today's current standards into a single design.
FlowNet is currently the world's fastest computer network capable of operating
over 100 meters of standard category-5 copper cable. The software for FlowNet
was developed and currently runs exclusively under Linux.

To appreciate how FlowNet works, it is important to understand some details
about network hardware, so we will start with a brief tutorial on the current
network state of the art.

Network Background

The dominant hardware standard for local area networks today is Ethernet,
which comes in dozens of variants. The only feature common to all forms of
Ethernet is its frame format; that is, the format of the data handled directly by
the Ethernet hardware. An Ethernet frame is a variable-size frame ranging from
64 to 1514 bytes, with a 14-byte header. The header contains only three fields:
the address of the sender of the frame, the address of the receiver and the
frame type.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Shared-Media Ethernet

Ethernet design has two major variations called shared-media and switched. In
shared-media Ethernet, all the network nodes are connected to a single piece
of wire, so only one node can transmit data at any one time. Ethernet uses a
protocol called carrier-sense-multiple-access with collision detection (CSMA/CD)
to choose which node is allowed to transmit at any given time. CSMA/CD is a
non-deterministic protocol and does not guarantee fair access. In fact, in a
heavily congested network, CSMA/CD tends to favor a single node to the
exclusion of others, a phenomenon known as the capture effect. Being on the
wrong end of the capture effect is one way a network connection can be lost for
a long period of time.

The CSMA/CD protocol does not allow a node to start transmitting while the
wire is being used by another node (that is the carrier-sense part). However, it
is possible for two nodes to start transmitting at almost the same time. The
result is that the two transmissions interfere with each other and neither
transmission can be properly received. The period during which a collision can
occur is the time from when a node starts to transmit to when the signal
actually arrives at all other nodes on the wire. This time depends on the
physical distance between the furthest nodes on the wire. If this distance is too
long, a node might finish transmitting a frame before it arrives at all nodes on
the wire. This would make it possible for a collision to occur that the
transmitting node would not detect. In order to prevent this from happening,
the physical span of a shared-media Ethernet network is limited. This distance
is known as the collision diameter; it is a function of the time necessary to
transmit the shortest possible Ethernet frame (64 bytes). The collision diameter
of a traditional Ethernet operating at 10Mbps is about two kilometers, which is
plenty for most local area networks. However, the collision diameter shrinks at
faster data rates, since the time it takes to transmit a frame is less. The collision
diameter for Fast Ethernet, which operates at 100Mbps, is 200 meters—a limit
that can be constraining in a large building. (The collision diameter for Gigabit
Ethernet would be 20 meters, but because this distance is so ridiculously short,
Gigabit Ethernet does not use CSMA/CD.)

Switched Ethernet

The way to get around the limitations of shared-media Ethernet is to use a
device called a switch. A switch has a number of connections or ports, each of
which can receive a frame simultaneously with the others. Thus, in a switched
network, multiple nodes can transmit at the same time. In a purely switched
network, every node has its own switch port and there can be no collisions.
However, there can still be resource contention because it is now possible for
two nodes to simultaneously transmit frames destined for a single node, which
still can receive only one frame at a time. The switch must therefore decide

which frame to deliver first and what to do with the other frame while waiting.
Switches typically include some buffering so that contention of this sort does
not necessarily result in lost data, but under heavy use, all switched networks
will eventually be forced to discard some frames.

How does the switch decide which frames to drop? Most switches simply
operate on a first-in/first-out basis. That is, when they are forced to drop
frames, they drop the most recently received ones. Not much in the way of
alternatives is offered because no information is in the Ethernet header to
indicate which frames are less important and should be dropped first. As a
result, when most switches become congested, they drop frames essentially at
random.

That behavior creates a serious problem. The response of most network
protocols, including TCP/IP, to dropped frames is to retransmit the dropped
frames. Thus, network congestion leads to randomly dropped frames, which
leads to retransmission, which leads to more network congestion, which leads
to more randomly dropped frames. When this happens, many networks, in
particular the Internet, will often come to a screeching halt.

Quality of Service

The only way to solve this problem is to add information to the frame to give
switches guidance on how to handle individual frames. For example, if a frame
is tagged as part of an e-mail message, a switch would know that it is perfectly
acceptable to delay this frame, but also that it should probably not be
discarded. On the other hand, if this frame is part of a video stream, then a
switch would know that if this frame cannot be transmitted right away, it
should be discarded, resulting in a small glitch in the video. Information on how
a frame should be handled in a congested network is known as quality-of-
service information or QoS.

QoS information can be provided in three ways. The first is to completely
redesign the network from the ground up. This is the approach used by the
Asynchronous Transfer Mode (ATM) network design. ATM is a circuit-switched
rather than a packet-switched network. In a packet-switched network like
Ethernet, each data frame contains its destination address in its header. The
process of delivering a frame to its destination is similar to that of delivering a
letter. At every switch, the destination address is looked up in a table to see
where it should go next. Circuit-switched networks like ATM put the destination
address into only one frame, called a flow-setup frame or flow-setup cell. The
flow-setup cell establishes a route through the network, much like placing a
phone call does. Subsequent frames are automatically routed through this pre-
established connection. The flow-setup process allows the ATM network to

allocate network resources ahead of time in order to provide quality-of-service
guarantees.

ATM's circuit-switched design is fundamentally incompatible with Ethernet's
packet-switched design. ATM also differs from Ethernet in the size of its frames.
Where Ethernet uses variable-size frames, ATM uses fixed-size 53-byte frames
or cells, of which five bytes are header and 48 bytes per frame are payload
data. This leads to a serious problem: the rate at which cells must be routed is
so fast that it can be done only with custom hardware, which makes ATM very
expensive.

The second way to provide QoS information is to put it in the data portion of an
Ethernet frame. This is the approach being taken by the Ethernet community,
through protocols such as RSVP. The advantage to this approach is that it is
backwards compatible with existing hardware, which is important because an
enormous Ethernet infrastructure is already installed. ATM can be made to
interoperate with Ethernet through a technology called LAN emulation (LANE),
but it is both difficult and inefficient.

The problem with implementing QoS using the existing Ethernet frame format
is that most existing hardware will not recognize the new protocols associated
with QoS. This can undermine the QoS mechanisms by injecting frames into the
network which are not properly tagged or by not handling tagged frames
properly. Thus, while this approach is backwards compatible with existing
hardware, it probably won't be reliable unless most of the existing
infrastructure is replaced.

The third approach is to add QoS information to the Ethernet header. This is a
non-backwards-compatible change, but not as radical a redesign as ATM, and it
can be done in a way that makes it easy to interoperate the new network with
existing hardware. This is the approach we have taken in the design of FlowNet.

Figure 1. The FlowNet prototype is built entirely from off-the-shelf components and fits in a
standard PCI slot just like an Ethernet card. In production, this board could be reduced to just
two or three chips.

The FlowNet Architecture

Like ATM, FlowNet is a switched network based on fixed-size cells. Unlike ATM,
FlowNet cells are large—800 bytes instead of 53. This allows room for a 14-byte
Ethernet header plus an additional QoS extension. The QoS extension header is
18 bytes, making the full FlowNet header 32 bytes long. The remaining 768
bytes (=256+512) are data payload.

FlowNet interoperates with Ethernet through a simple bridge device. To convert
a FlowNet cell into an Ethernet frame, the bridge simply strips off the QoS
extension. To go the other way, it generates a QoS extension with default or
user-configured values. For example, the bridge could be programmed to give
frames from certain workstations high priority, while frames from other
workstations receive low priority.

Figure 2. A diagram of the FlowNet prototype showing the location of the major components.

Distributed Switching

The FlowNet architecture is innovative in ways that go beyond the structure of
the frame. A FlowNet network interface card (NIC) is quite simple, consisting of
a transmitter, receiver, some memory and a microprocessor. NICs are logically
daisy-chained together to form a loop. Physically, FlowNet uses a star topology
with a hub, just like Ethernet. When a node sends a cell, the cell is received and
retransmitted by every node between the transmitter and the receiver, an
arrangement known as a store-and-forward loop. To reduce latency, FlowNet
uses a technique called cut-through routing, which allows a cell to be
retransmitted as soon as the header is received.

The resulting network is a switched network, with a unique feature: it does not
require a switch. Instead, each NIC acts like a little two-port switch, with one
port on the network and another at the host interface. Switching capability is

distributed among all the nodes on the loop. Cell routing decisions are made in
software by the on-board microprocessor, which provides sophisticated quality
of service without expensive custom hardware.

Making cell-switching decisions in software is possible due to FlowNet's large
cell size. Cell-switching decisions are made on a per-cell basis. Larger cells
mean fewer cells for a given data rate, which means fewer cell-switching
decisions to be made. Current FlowNet prototypes can switch data at 250Mbps
full-duplex (for a total data rate of 500Mbps) using an Intel i960
microprocessor.

Development

FlowNet is a state-of-the-art network. Beside being the fastest network
available over 100-meter runs copper cable, it is the only network available that
provides quality of service and is efficiently interoperable with Ethernet.
FlowNet was developed on a shoestring budget (about $20,000 US for a dozen
prototypes) by the authors working alone in their spare time.

Open-source software, including Linux and Intel's gnu960 development tools,
was instrumental in allowing this to happen. Linux was used to develop both
the on-board firmware and the device drivers for FlowNet. Several Linux
features were crucial for allowing us to meet our objectives. The first was the
availability of model code for device drivers. Because FlowNet's interface is so
similar to Ethernet, we were able to use Donald Becker's Tulip driver as a model
and adapt it for FlowNet rather than starting from scratch.

The second Linux feature that helped immeasurably was kernel modules.
Because device driver code is kernel code, it was not possible to run it as an
application. Without modules, device drivers have to be tested by compiling
them into the kernel and rebooting. This adds time to the development cycle.
With kernel modules, kernel code can be dynamically linked and unlinked,
reducing the testing cycle to less than a minute. We built a kernel module for
FlowNet that loaded the card's firmware through the PCI bus during
initialization. This made it possible to recompile and restart all the FlowNet
software with a single make command. As a result, all of the software for
FlowNet was developed in less than three months.

The only time rebooting was necessary was when a bug in the driver code
caused a kernel panic. Sometimes this would cause the machine to crash, but
not always. At no time during the development process did we ever lose any
data as the result of a kernel crash, despite the fact that on occasion we were
overwriting critical kernel data structures with random bits. Linux is
astoundingly robust.

Conclusions

FlowNet would not have come into being without Linux for a development
platform. The hardware costs stretched our meager budget to the limit. The
development tools needed to develop FlowNet for a commercial OS would have
killed the project.

FlowNet was first conceived in 1993. Although Fast Ethernet (and soon, Gigabit
Ethernet) seem to be taking over the world, FlowNet is still unique in offering
gigabit performance and quality of service without requiring fiber optic cabling
or discarding Ethernet infrastructure. Linux made it possible to build FlowNet
as a private development—it almost certainly could not have happened any
other way. FlowNet is not currently in production; contact the authors for more
information (http://www.flownet.com/).

Erann Gat (gat@flownet.com) is a senior member of the technical staff at the Jet
Propulsion Laboratory in Pasadena, California.

Mike Ciholas (mikec@flownet.com) is the owner of Cedar Technologies, a
hardware design consultancy in Newburgh, Indiana.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:gat@flownet.com
mailto:mikec@flownet.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Linux with Network Computers

Brian Vincent

Issue #60, April 1999

A look at one man's experiences setting up Linux as an application and boot
server for Neoware network computers.

For over three years, the computer industry has been touting the benefits of
network computers, including higher reliability, lower cost of ownership and
simpler administration. Yet despite this, few people have seen a network
computer. Even fewer have configured, installed and supported them.

The premise behind network computers is increasing both reliability and
manageability. The former is done by removing components with high failure
rates, such as the hard drive and fans; the latter is improved by centralizing
applications on servers. A standard proposed to the Open Group embodies
these principles in the “NC1 Reference Profile”. The hardware specifications
require only a keyboard, pointing device, network adapter, audio, 8MB RAM
and 640x480 resolution. The PC industry proposed the “NetPC” standard which
further requires an X86 style processor, hard drive and plug-and-play
compatibility.

The NC1 standard is followed by Neoware's line of network computers. In
addition, Neoware added a Java virtual machine, support for PCMCIA cards,
higher video resolutions and more memory. Also supported is a wide variety of
network protocols, making integration into existing networks fairly easy. For
this, Neoware is consistently rated among the top of the NC manufacturers and
is also the reason we chose to work with them.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. A Look Inside

The company I work for is Unique Systems, Inc., based in Toledo, Ohio. We have
a large customer base throughout the Midwest. Our primary focus is custom
programming and support for an accounting and job cost system. In addition,
we are often asked to perform system administration for our clients. As a
result, simplicity and remote administration are essential. We do not have the
time or the staff for long-term on-site maintenance. NCs are a perfect fit.

Before I get into configuring and using an NC with Linux, let me describe the
basic functionality of a Neoware NC, in particular NeoStation 200. When the NC
is first turned on, it establishes a TCP/IP network connection and obtains its IP
address via BOOTP, DHCP or from a value stored in flash memory. Next, it
downloads its operating system (Neoware uses netOS) from a boot server and
initializes it. The user is then presented with a graphical login screen similar to
XDM. It has the ability to authenticate against any host on the network. After
logging in, a window manager is started. The default is netoswm—similar to
FVWM95. Open Look and Motif window managers are also available. All the
window managers are capable of running remote X applications or Windows
applications using ICA. Many applications can be downloaded and executed out
of RAM as needed; others can be run remotely using either X or ICA
(Independant Computing Architecture) thin-client desktops.

Figure 2. A Windows ICA Session, Remote Character Application and a Netscape Window

Many of our clients need to do only basic office tasks: access to the accounting
system (which we can provide via a terminal session or a Java applet front end),
e-mail and an office suite. An NC is a good match for these applications.
Terminal emulation is provided by the TeemNC application. E-mail can be done
with Navio's Netscape Navigator 3.0 for netOS. For an office suite, we install
Applixware on a Linux server and execute it remotely from the NC (this is much
faster than you might think).

What else do you need beside a Linux server to make it work? The short answer
is—nothing. In practice, however, a few things need to be done on other
platforms. In particular, I have had difficulty getting the daemon in.timed to
work properly to provide time services, and several commercial applications
have not yet been ported to Linux.

Let's start from the beginning with how the netOS gets loaded onto the NC and
what part Linux plays in the process. When a NeoStation is turned on, it gives
the option of entering a configuration screen; all the network configuration can
be done from here. The IP addresses of the DNS server, gateway and boot host
(all Linux machines) can be supplied, as well as the address of the NC itself. The
location (directory) on the boot host where the netOS operating system resides
also needs to be supplied. The access method can be either NFS, FTP or TFTP,
with NFS being the preferred method. Once the NC is configured and restarted,
it searches the network for the specified boot host, attaches to it using the
chosen protocol and downloads its OS.

Neoware supplies netOS on a CD with an installation shell script. This script
ensures the license key is valid, prompts for the installation directory and
copies files off the CD into that directory.

Configuration of the boot host is a little more complicated. NFS needs to be
configured if it is to be used as the access method. Usually this involves editing
the /etc/exports file and adding an entry for the netOS installation directory.
You might also want to make sure NFS starts up on boot. We usually configure
the boot host to run domain name services and sendmail for the network, just
because Linux is so good at it.

Now, assuming all this is in place and running, the NC should boot up and
present the user with a login screen. Any host can be used to authenticate
against, but it is easiest to supply it with a user account on the Linux boot host.
After logging in, the NC looks for a window manager configuration to run. It
defaults to a system-wide configuration on the boot host if it can't find a
custom one in the user's home directory.

Any applets/applications installed with the netOS are part of the default
window manager configuration. These include Netscape Navigator 3.0 and
miscellaneous utilities such as a calculator. You can run them by navigating
through a menu tree similar to the infamous “Start” button, or through a
floating button bar on the desktop. Unfortunately, adding anything requires
knowledge of how to edit a window manager configuration file. The saving
grace is that the format is similar to many “standard” UNIX configuration files.
One of the first things I do is edit this file to remove the button for the “Setup”
utility and add buttons for Applixware and TELNET access to remote hosts.

Neoware ships an ICA client with netOS that allows you to run Windows
applications alongside X, Java and character applications. If you need to run
Windows applications, you can set up an NT Terminal Server with Citrix's
MetaFrame for Terminals (which is significantly less expensive than other
MetaFrame products). The client can be started through the root window
menus. In the screenshots (see Figures 2, 3 and 4), you can see all of these
running alongside each other. Interestingly, when that screenshot was taken,
only half of the system memory was being used—16MB were free.

Working with netOS is not very difficult. The console window on an NC offers
several UNIX-like commands that can be used to show the current hardware
configuration, connect to remote machines (such as by TELNET and FTP) and
browse the file system. The file system is similar to an NFS file system: most of
the files reside on a remote computer, but the local ROM can also be examined.
Very few configuration files on the server ever need to be edited and almost all

of them lie in the same directory. Devices can be accessed, similar to UNIX. You
can access the parallel port through /dev/pp0, for example.

Is it that easy? Yes, provided you have a good understanding of configuring NFS
and adding hosts to the network. Almost all the problems encountered when
setting up a boot host are associated with NFS permission problems on the
part of the NC. A boot log is generated on the NC that can be viewed to
troubleshoot problems. Setting up the first NC on the network is the hardest
part, because of all the configuration that has to be done on the server. After
that, getting other NCs up and running applications on the network happens
about as fast as you can unbox them. In fact, it is not an exaggeration to say it
takes longer to open up the boxes than it does to configure the NC.

Figure 3. Some Character-based Applications Running in Different Windows with Different
Emulations

Figure 4. A Few X Applications, Applixware and Netscape

With the amount of X and character-based applications available, why haven't
NCs caught on? The most obvious reason is the drop in price of PCs. Before
1995, it was next to impossible to find a PC for less than $1000 US; now, nearly
every computer manufacturer offers a few to choose from. Another reason is
the lack of Java applications that were promised. NCs were supposed to be the
ideal platform to run all the Java applications that have yet to appear. For better
or for worse, the industry leaders in the NC market are not the industry leaders
in the PC market.

All that aside, network computers are still the ideal platform for many people
who use computers. Anyone using a terminal to access a character-based
application on a server can benefit enormously by the ability to have multiple
windows open and viewable simultaneously on an NC. The learning curve on an
NC can be tailored to fit individual users by changing the complexity of the
desktop. For curious users or those unfamiliar with computers, it is next to
impossible for them to accidentally render an NC unusable. Network
computers and Linux servers make a powerful combination.

Brian Vincent (brian@uniqsys.com) is a systems administrator in Toledo, OH.
He has been using Linux since 1995 when he discovered he could complete his

mailto:brian@uniqsys.com

course work from home instead of trudging to crowded computer labs. In his
spare time he enjoys downhill skiing, backpacking and rock climbing.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Network Administration with AWK

Juergen Kahrs

Issue #60, April 1999

If you are looking for an easy way to access your network services, AWK
scripting provides the means.

What does the scripting language AWK have to do with networking? In the May
1996 LJ, Ian Gordon introduced us to AWK and demonstrated how to solve
common problems with this scripting language that is part of Linux and every
UNIX-compatible operating system. He summarized:

If your main concern is getting a working program
written as quickly as possible, you probably do not
want to wrestle with C or C++ for a week to perfect the
most efficient algorithm. By trading off the speed
advantages and control features of C (or another
compiled language) for ease of use, gawk lets you get
the job done quickly and relatively painlessly.

With this kind of efficiency in mind, it would be nice to also access network
services with short AWK scripts. However, standard AWK has no functions for
networking, and most AWK users would probably object to the introduction of
such functions. AWK should stay the small, simple and powerful language it is
now. Release 3.1 of GNU AWK does not introduce special functions for socket
access (as Perl and C have), but uses a special file name for it. By treating
network connections like files, even novices can write web clients with a few
lines of AWK.

Finding Who is Logged In

Let's look at an example. It asks the finger service of your local machine if a
particular user is logged in.

BEGIN {
 NetService = "/inet/tcp/0/localhost/finger"
 print "
 while ((NetService |& getline) > 0)
 print $0

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 close(NetService)
}

Store this script in a file named finger.awk and let GNU AWK 3.1 execute it by
typing gawk -f finger.awk. The strange pipe symbol, |&, is the second and last
addition to the AWK language needed for networking. When communicating
over a network, we have to use |& instead of simply |.

After telling the service on the machine which user it is looking for, the program
repeatedly reads lines that form the reply. When no more lines are received
(because the service has closed the connection), the program closes the socket
before finishing. Try replacing name by your login name or the name of
someone else logged in. If you want a list of all users currently logged in,
replace name by an empty string (""). Also, change localhost to another
machine name in your local network; doing so allows you to watch who is
logged in on machines at remote locations.

The Coke Machine

Okay, this is not really an exciting application. The result you get is identical to
the one you get by typing finger name@localhost at the shell prompt. So, let's
try a really useful application. Today, many Coke machines are connected to the
Internet. A short list of such machines can be found at http://
www5.biostr.washington.edu/~jsp/coke.html. There, you see that the way to
access them is identical to what we did in our first (and not so exciting) example
—a finger request. Let us take the first Coke machine from the list and ask the
machine which kinds of soft drinks are available there.

BEGIN {
 NetService = "/inet/tcp/0/cs.wisc.edu/finger"
 print "coke" |& NetService
 while ((NetService |& getline) > 0)
 print $0
 close(NetService)
}

Usually you get a reply with information on the different flavours of Coke and
root beer currently available. If you have an account there, you can also order a
drink. Many other machines of this kind are connected to the Internet. (See
Resources.)

Both examples shown would work even if we deleted the final close command,
because the operating system closes any open connection by default when a
script reaches the end of execution. In order to avoid portability problems, we
always close connections explicitly.

The Weather in Germany

Unlike the Coke machine service, most web services we access usually transmit
HTML pages across the Internet with a protocol named HTTP. To most people,
this is the real Internet. Can we access the real Internet with GNU AWK?
Certainly. We just have to make sure we connect to port 80 of the web server
instead of the finger port. This way, we can connect to the Yahoo machine and
let it tell us the weather conditions at the place we live.

BEGIN {
 NetService = "/inet/tcp/0/
 print "GET http://weather.yahoo.com/forecast/Bremen_DL_c.html" |&
 NetService
 while ((NetService |& getline) > 0)
 print $0
 close(NetService)
}

Before starting this script, make sure you know which proxy server your
provider uses and insert its name into the second line. If you do not use a
proxy, insert the name of the web server (weather.yahoo.com). The result is the
HTML content of the web page. It is up to your scripts to bring it into a more
readable form or to extract the details of interest for further processing.

Reading the Ticker

Sometimes we are not really interested in viewing a web page. Imagine a web
robot (or agent) that looks at the quotes of the Motorola stock shares every 15
minutes and sends you an e-mail if the price hits a certain limit. A command-
line call that is executed every 15 minutes is easily written and stored in a shell
script. Also, depending on the content of a data file, sending an e-mail is as
straightforward to write as a shell script. Here is a script that reads the ticker
for you:

BEGIN {
 NetService = "/inet/tcp/0/
 print "GET http://quote.yahoo.com/q?s=MOT&d=v1" |&
 NetService
 while ((NetService |& getline) > 0)
 print $0
 close(NetService)
}

Again, you must insert your proxy's name into the second line. During
execution of the script, a request is sent to Yahoo's quote server and the
resulting web page should be redirected to a file by you. With a grep command,
the price can be extracted from the HTML text and compared to the limit.

Advanced Applications

In these examples, we have seen how useful applications can be written built
on the same simple framework. This framework represents only a small

fraction of what can be done with GNU AWK's networking device. Both TCP and
UDP connections are available and both clients and servers can be written.
More of the advanced applications can be seen in the small manual that
supplements the official documentation distributed with the GNU AWK sources.
(See Resources.)

Treating network connections like files is not a feature unique to GNU AWK.
When TCP/IP was integrated into BSD UNIX in the early 80s, the creators of the
socket API originally intended networking connections to appear as special files
even to the user. But networking turned out to have many special cases which
could not be handled in a uniform way with file handling. Later, the Portal File
System approach was integrated into BSD UNIX. Portals are similar to GNU
AWK's special file but are integrated as a file system into the operating system.
This works well because the user can even establish connections at the shell
prompt. The most recent implementation of the Korn shell (ksh93) provides
virtually the same concept (/dev/tcp) at the shell level. None of these
approaches has gained wide acceptance among users. Even Richard Stevens'
article on Portals (see Resources) has not changed this.

One other approach to networking at the shell level that has gained some
acceptance during the past year is the tool netcat. Originally a kind of UNIX
hacker tool, it simply binds the standard input and output of a process to a
network connection. It knows TCP as well as UDP, can behave as a server and
allows “port scanning”, i.e., checking if there are servers listening at certain
ports. This tool is simple to use and powerful, but some of the comments in the
source code are quite unprofessional. Seldom have I seen such a large number
of indecent curses, foolish hype and pure ignorance in a source file. Recently,
netcat has been ported to Windows NT. To a humble user of NT, such a tool is
like a long-awaited revelation.

Microsoft Windows

Back to pure AWKism and the different forms this belief takes on. On which
platforms other than Linux is the networking feature of GNU AWK 3.1 available?
It should work on all UNIX systems that comply with the XPG4 rules; this
includes every UNIX that has a significant market share. Although the exact
release date for GNU AWK 3.1 has not been set, this new feature should also
work on Microsoft Windows 95 and NT as a part of the Cygwin tool set as soon
as both are out. Cygwin is a UNIX-compatible programming environment that
runs on top of Microsoft's Win32 API. It is currently available only as a beta
release, but is already able to compile its own set of sources.

When this article was written, compilation of GNU AWK 3.0.3 worked fine, but
3.1 caused problems. If you intend to compile the sources in this environment,

be prepared to experience some trouble. Most importantly, avoid compiling on
the same machine you are using for networking with GNU AWK. In case you
have only one machine available, reboot between compiling and testing. As of
release B20 of the Cygwin tool set, clients and servers written in GNU AWK
worked on Windows 95 but no server worked on NT 4.0 SP3. As of release
B20.2, the compiler supports linking the file gawk.exe statically with all needed
dynamic libraries. This would allow for distributing the GNU AWK interpreter as
one single executable, but this executable does not work. Those problems
should be solved by the time you read this; therefore, networking on Windows
95 should work.

Trade-Offs

We have seen that network access through a special device is good enough for
many useful applications, but there are advanced features we have to trade off
for this convenient access method. Some things are simply not possible within
the easy-to-use framework AWK employs, namely:

• broadcasting
• non-blocking read
• timeout
• forking server processes

In spite of the lack of these advanced features, advanced applications such as a
prototype “web server” or a “mobile agent” have been implemented in GNU
AWK. If you need, and can handle, features like broadcasting or non-blocking
read, you should use Perl or C instead of AWK.

Resources

Juergen Kahrs (juergen.kahrs@t-online.de) has used AWK on MS-DOS for time
series analysis, statistical analysis and graphical presentation, mostly of
neurological data. In 1996 he switched to Linux and enjoyed seeing his old
scripts still running in a more efficient programming environment. He has come
to peace with the fact that AWK will never be mainstream and enjoys seeing C
programmers spend nights chasing NULL-pointer accesses. Juergen did the
initial work for integrating TCP/IP support into gawk.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3132s1.html
mailto:juergen.kahrs@t-online.de
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Training

Scott Schad

Issue #60, April 1999

A report on Caldera's new Linux Administration Course.

Imagine you are at a piano recital. Expecting the choppy, hesitant performance
of a scared youth, you suddenly learn that Van Cliburn is in town and has
volunteered to step in so the poor boy can study for finals. What follows is the
smooth, effortless performance of a master, an incredible bargain for the price
of your tickets. So it is with Caldera's new Linux Administration class.

As Linux completes the transition from religious movement to corporate
initiative, the need for serious, accredited training grows. The class composition
in this, the second-ever Linux Administration course, hailed from all across the
U.S. and reflected the broad appeal of the operating system. Joining me in the
pilgrimage to Caldera's Utah offices were an Internet service provider, an IT
administrator from a community college, a couple of CAD/imaging specialists, a
medical records administrator, an officer from a medical supplies company, a
VAR and a system administrator from an on-line catalog firm. Previous Linux
experience ranged from extensive to nil.

I came because the Engineering Tools group I manage at MCIWorldcom
develops web-enabled databases. I'd been using Linux off and on for several
years, but recent testing of the new Linux releases of Sybase and Oracle had
convinced me that a significant corporate hurdle to using Linux, the availability
of major-league databases, was now gone. Could Linux replace our present NT-
based web and database servers? I attempted to find out.

The Linux Administration class runs four days, with an installation class on day
five. The course makes few assumptions: you begin by learning how to properly
start and shut down the system, configure the boot loader, create partitions
and file systems. From there you cover basic system commands, then user and
group management. After learning how to customize the environment and set
permissions, you move on to a very thorough treatment of networking. We set

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

up a simple network, configured serial terminals, used NFS and Samba. We
synchronized each machine to a time server, configured FTP and web servers
and then set up full domain name services.

CGI programming, Sendmail, security and firewalls were covered briefly but
thoroughly. After a session on printing and package management, we delved
into the arcana of system initialization processes, loading and unloading
modules on the fly, backing up the kernel, even rebuilding the kernel to
customize it. After a discussion of log files and troubleshooting techniques, we
spent the last day installing OpenLinux systems on our class PCs.

Throughout the course, I was impressed with the depth of knowledge the
instructor (Wilson Mattos) displayed and the resources Caldera brought to bear
on difficult questions. Eric Ratliff (working with Linux since release 0.11) and
Allan Smart (a Caldera director) were always on hand to explore involved topics
as deeply as we wished.

How does the class compare to other industry training courses? I've taken most
of the classes Oracle offers and a good number from Sun. Unlike other industry
courses, our instructors at Caldera stayed in the room during exercises to help
the students. The instructors didn't read PowerPoint slides to us, and the
exercises in the book were relevant, clear and useful. Even given the beta
nature of the class and the occasional bobble in the documentation, I would
rate the level of instruction and the professionalism as good or better than
most industry short courses.

Also to Caldera's credit, the Linux instruction was as vendor-neutral as possible.
The class used networked Caldera OpenLinux PCs, but Mr. Mattos always
covered variations which might arise with distributions from Red Hat, Debian,
Slackware, SuSE, etc. Class participation was invaluable; members contributed
many useful tips about distribution idiosyncrasies and about Linux in general.

The little things you'd expect from a Linux vendor were also present—the
“Designed for Windows95” sticker strategically placed on the copier waste
basket, abundant refreshments, the vigorous debate that arose over future
Linux certification tests. (Does complying with the GNU open-source license
mean Caldera must include answers with the certification questions?)

The one-day installation class at the end of the week clarified the often obscure
aspects of loading up Linux. In addition to giving everyone a boxed copy of their
latest Linux release, Caldera instructors even helped class members get Linux
up and running on their personal laptops.

I would have preferred more elementary coverage of certain basics (shell
scripting, for example) at the expense of advanced networking instruction, but
the class did a good job of distilling the core knowledge of Linux into a
retainable, five-day package.

Will I now go back and lobby MCIWorldcom to put Linux on every desktop?
Probably not. Even with the slick new KDE X interface in Caldera's latest
distribution, I think it is still going to take further evolution before the corporate
desktop line is breached. However, my company places a premium on finding
the most cost-effective, efficient ways to run its telcom business, and ignoring
opportunities has never been a winning strategy. I think Linux can find a secure
home right now on machines used as corporate servers. No matter how you
slice it, running Linux on network file, print, mail, database and web servers
delivers potent bang for the buck. These systems scale quite well, are
remarkably stable and are least restrictive in terms of development options.
Major league databases are now running quite well on Linux (Sybase comes
bundled with the latest OpenLinux release) and the remaining corporate
concerns about support and formal training are being handled capably by
companies like Caldera.

I'd like to thank the Caldera staff for good value on the education dollar and for
their hospitality during the class. I'd also like to thank the Engineering Tools
group at MCIWorldcom for tolerating my Linux evangelism.

Scott Schad is a petroleum geologist (when the price of oil is high) or a database
developer (when it is not) in Tulsa, Oklahoma. When not pushing Linux and
True Basic, he studies Bruce Lee's Jeet Kune Do to become a lean, mean,
fighting machine.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Blender

Ben Crowder

Issue #60, April 1999

No, it is not that thing you use to stir up food in your kitchen—it is a hot new
state-of-the-art 3-D modeler.

Blender is a free, full-featured 3-D modelling and rendering environment. In the
words of the Blender web site:

Being the in-house software of a high quality
animation studio, Blender has proven to be an
extremely fast and versatile design instrument. The
software has a personal touch, offering a unique
approach to the world of three dimensions. Use
Blender to create TV commercials, to make technical
visualizations, business graphics, to do some
morphing or to design user interfaces. You can easily
build and manage complex environments. The
renderer is versatile and extremely fast. All basic
animation principles (curves and keys) are well-
implemented.

If you have any previous experience with 3-D modelers, one of the first things
you will notice after playing around a bit with Blender is that it is incredibly fast.
The primary author, Ton Roosendaal, says one of his favorite hobbies is
throwing extraneous code out of Blender, and it shows.

Blender History

Way back in 1989, Ton Roosendaal started up an animation studio called
NeoGeo with a handful of friends. They wrote their own in-house 3-D software,
“Traces”, but Ton was not satisfied with it. He evaluated it (as well as SoftImage
and Alias), analyzed its shortcomings, and in 1995 started work on Blender. In
January 1998, NeoGeo released the SGI version of Blender. Due to the immense
popularity of the program, Linux and FreeBSD versions were soon released in
April. In mid-1998, NeoGeo was partly taken over by another company (Alatis),

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

so Ton created a new independent company, “Not a Number”, to take over
Blender development.

Getting Blender

The main Blender web site is at http://www.blender.nl/blender.html. The
software is available at NeoGeo's FTP site, but it is best to find an FTP site
geographically closer to you. Linux and FreeBSD x86 versions are available, but
if you have an Alpha, SPARC or Power PC, you are out of luck. Hopefully, ports
will soon be released for other platforms. However, there is a broader
availability for SGI's—from R3000-based Indigos all the way to the R10000-
based Octanes.

Download the archive file you want, either blenderLinux-dynamic_x.xx.tar.gz or
blenderLinux-static_x.xx.tar.gz, where x.xx is the version number. (The current
version at the time of this writing is 1.37.) The dynamic version is linked to the
Mesa 3.0 libraries as well as a few others, so if you don't have Mesa, get the
static version.

If you want, you can also grab the Blender tutorial files (tutor_1.01.tar.gz and
tutor_2.0.tar.gz). The version 1.01 tutorials aren't actually tutorials—they are
example files, but they don't show you how to create the files. Regardless, try
them out, since they are pretty cool. Examples include a bat animation, a short
sequence from “The Lost Ride”, a 3-D game by NeoGeo and a cool walking
spider animation, in addition to a bunch of others. The version 2.0 tutorial
shows how to morph a cube into a sphere and includes a tutorial on how to do
the morphing. In addition to the two tutorial files, you can get the Blacksmith
demo which includes examples of particle animation (i.e., fire and smoke).

I would suggest getting the manual—manual_1.02.html.tar.gz. While it is a little
out of date, some of the information still holds true. It especially helps in
understanding how Blender is object-oriented.

System Requirements

Even though the Blender web site says the minimum system is a Pentium 90
with 32MB of RAM, I've found that a fast 486 (DX2 66 or better) with 16MB of
RAM is adequate for simple modelling and even for some more complex stuff.
Still, if you want to do serious modelling, you definitely need at least a P90. As
noted above, however, at this time you must have an x86 machine. You will
need at least an 800x600 resolution screen (the buttons are a bit squashed
though, so if you can get 1024x768 or better, go for it) and you definitely need
at least 15bpp. You might be able to get away with 8bpp, but I would heavily
advise against it. For one thing, everything is green, and in some rare cases,
Blender might even crash.

Installing Blender

1. Once you've downloaded the Blender archive file, move it to the
installation directory and unpack it:

 gunzip -c blenderLinux-xxx.tar.gz | tar -xv

2. Change directories to the blenderLinux_xxx directory
(cd blenderLinux_xxx).

3. Copy all of the .B files to your home directory (cp .B*h ~).
4. For bash users: edit your /etc/profile file (or if you're installing locally,

$HOME/.bash_profile) by adding a line that reads:
 export BLENDERDIR=/

5. For tcsh and csh users: create an environment variable BLENDERDIR in
your $HOME/.cshrc file:

 setenv BLENDERDIR /

6. Restart your shell.
7. Run Blender (blender).

Basic Usage

If you haven't used 3-D software before, the GUI may look complex and difficult
at first, but you'll get used to it. When you first start up Blender, you'll see a
large grid in the center of the screen—that's the 3-D window. Down on the
bottom is the buttons area. Finally, at the top is the options area, where you
choose which scene to edit, font paths, etc. If you are running on a small display
(800x600 or less), you may not be able to see most of the top window. In this
case, click on the edge of the top window and drag it down until you can see it.
For now, you need only be concerned with the 3-D window and the buttons
window.

Basic keystrokes/mouse movements

https://secure2.linuxjournal.com/ljarchive/LJ/060/3140s1.html

Figure 1. Initial Blender Screen

All of the Blender widgets and menus are rendered through Mesa; this means
you can zoom in and pan around almost anything. For example, in the buttons
window (down at the bottom), you can hold Ctrl-MiddleMouseButton and drag
around to zoom in or out. Notice that when you zoom, the buttons, including
the fonts, are scaled. To pan, use the middle mouse button and drag around.
This works everywhere—even in the button bars on each window.

The black cross with a red and white striped circle around the center is called
the 3-D cursor. Whenever you add an object, it will be placed at the location of
the 3-D cursor. To move the 3-D cursor, just left-click on the spot where you
want it.

The black triangle with the little yellow ball (a few units down from the center) is
the camera. Right-click on it to select, then press g to move it around. When you
decide on a location for the camera, click the left mouse button.

The Blender windowing system is somewhat similar to HTML frames. Each
window can be infinitely split (though a practical limit does exist—if you can't
see the windows any more, you've gone too far) by moving the mouse into the
window to be split, then clicking with the middle mouse button on the window
pane perpendicular to the direction of split. If you want to split a window
horizontally, click on either the left or right vertical pane. Then when “Split?”
comes up, click on it. To join two split windows, right-click on the pane you want
to remove, then click on “Join?” when it comes up.

Two main editing modes are included: normal and edit. You can toggle between
the two using the tab key. When you add an object, Blender automatically
switches to edit mode (for most objects, anyway). For example, let's say we add

a Mesh cube. When the cube appears on the screen, it is in edit mode. If you
right-click on one of its vertices (the purple dot means it is not selected, the
yellow dot means it is), you can then press g to move the vertex around. If you
press b, which stands for “Border Select”, you can draw a rectangle over the
selected vertices.

The Toolbox is brought up using the space bar and enables you to add objects.
Note that you can also use the Add primitive function (shift-A), which brings up
the Toolbox and the Add submenu. Most of the hot keys are placed here. If you
need to get out of the Toolbox window, either press esc (the standard for
Blender windows) or move the mouse away from the window.

Figure 2. Building a Blender Scene

Your First Scene

To build your first scene, follow these steps:

1. Switch over to top view, if you aren't already there (number pad 7).
2. Move the 3-D cursor to the center of the grid.
3. Bring up the Toolbox (space bar).
4. Left-click on Add, then on Mesh, and finally on Cube. Another way of

saying that is Add->Mesh->Cube.
5. Press tab to leave edit mode.
6. Click on the red sphere in the button area (Materials).
7. On the right side of the screen, click on the icon with a white horizontal

bar.

8. In the left side of the buttons area are some sliders labeled R, G and B
(Red, Green and Blue). Slide the Blue all the way to the right, and slide Red
and Green all the way to the left. The “material preview” rectangle should
turn blue.

9. Move your mouse cursor back into the 3-D window.
10. Change to side view (number pad 3). Move the 3-D cursor to somewhere

above the cube, though it should be somewhat close (no further than 20
units away).

11. Click on Add then Light.
12. Press f12 and watch the scene render.
13. Press f11 to get rid of the render window.
14. Press f2 to save the created scene. Once the file window comes up, click in

the second input box from the top (under the directory name) and enter a
name for your scene. Then press enter twice to save the file.

Figure 3. Blender Designed Scene by Bart Veldhuizen

The Future of Blender

Ton Roosendaal hopes to eventually port Blender to a number of systems, but
right now that isn't a priority. By the time this article is printed, the manual and
a free version of Blender 1.5 will have been released. After the manual goes
out, a commercial CD-ROM will be published containing Complete Blender
(version 1.8)--hopefully, by mid-1999.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/060/3140f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3140f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3140f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3140s2.html

Ben Crowder is a young Linux aficionado living in Utah. He finds himself
becoming more and more hopelessly addicted to Linux. In addition to fiddling
with the insides of computers, Ben enjoys reading, writing and music. He can
be reached at mlcrowd@enol.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

LJ Interviews John Ousterhout

Marjorie Richardson

Issue #60, April 1999

LJ talks to the creator of Tcl/Tk about the port of TclPro to Linux.

John Ousterhout provided the Open Source community with the freely available
Tcl scripting language and its companion toolkit Tk. These days he is busy
running his company Scriptics, where he is developing commercial tools for use
in developing Tcl/Tk applications. I talked to him by phone in December 1998,
when Scriptics released TclPro 1.1 for Linux.

Marjorie: The first thing I would like to know is what is the big deal with porting
to Linux? Haven't Tcl products always worked with Linux?

John: The big deal! You have to distinguish between Tcl the language and the
TclPro product. Tcl the scripting language, its toolkit Tk and all the various
extensions available for them have worked on Linux for years, probably five
years or more. They are present on most of the popular Linux distributions,
various CDs by Red Hat and others. The news we are talking about right now is
our company's TclPro product, which is a set of development tools. We have

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

just made a new release that supports Linux for the first time. Our previous
releases did not support Linux, although you could run Tcl programs on Linux,
our development tools which make it easier to develop Tcl scripts were not yet
available to you.

Marjorie: What operating system were they running on?

John: Scriptics is a fairly young company—we've been around just about a year
now. We released our first product, TclPro 1.0, in September and it ran on
Windows 95 and 98, NT and two UNIX variants, Solaris and HP-UX. We thought
about including Linux support from the start, but we guessed that since Linux
was a free platform that not many people would be interested in buying
products for it. The TclPro Toolset is a commercial product.

So, we didn't initially support Linux. We thought we'd probably do it eventually,
just not right away. Then as soon as we made the first beta release last
summer, we were inundated with requests for Linux—it was truly a pleasant
surprise to see how much interest there was from the Linux community. It
began to appear to us that, in fact, Linux people are actually interested in this
kind of tool and would even be willing to pay for it.

Marjorie: It's amazing, isn't it?—that they'd be willing to pay!

John: Well, my take on this is that Linux may have started off with a community
of gung-ho users who were attracted by the freeness of it. I think more and
more people are now using Linux because of the sophisticated features and
reliability it provides, and the fact that it is free is a bonus. People are willing to
pay for software that adds value to their Linux systems.

Marjorie: I think they are too, definitely.

John: Once we started getting all these requests for Linux, we realized we had
goofed in not planning for Linux in our first release. We looked at getting it into
that 1.0 release, but it would have messed up the schedule too much. So, we
planned a 1.1 release as soon as possible after the first release. That's what we
are doing right now. It's been about three months since we made the 1.0
release. The 1.1 release adds a port for Linux and the SGI platform.

Marjorie: How much work did it take to do the port? We've heard from some
people that all they've had to do is run make.

John: Yeah, Tcl is very portable, and so was TclPro. The only hassle was actually
getting a Linux machine here and getting the build environment set up with C
compilers, etc. Once we had that done, it was only a day or two of work to get
TclPro running on Linux.

Marjorie: We like to hear that it was quick and easy.

John: One of the neat things about Tcl is that it is an extremely portable
programming environment—Tcl, all its applications, and all the TclPro tools are
actually built with Tcl. Thus, they are all very portable. In some sense, this is a
relatively minor announcement for Scriptics in that it is an upgrade release. It
has a couple of new features but nothing earthshaking in the way of features.
However, I think it's a very interesting release as yet another confirmation of
how much demand there is for commercial products for Linux. I also think it is
an interesting confirmation of how important Tcl is to the Linux community—
people who use Linux are crying out for it. Tcl is one of the best ways of doing
graphical user interfaces and also a variety of other applications on Linux.

Marjorie: I think that's true, too. What advantages do you think Tcl has over
other scripting languages?

John: That's a good one. The real power Tcl brings is that it's wonderful for
creating integration. Compared to other scripting languages, Tcl's advantage is
that it can be used for a huge variety of applications. Most other scripting
languages were designed for a particular domain. For example, Perl was initially
designed for system administration and reporting tasks; JavaScript was
designed for scripting in web browsers. These languages work great in the
areas for which they were designed, but sometimes don't work as well in other
areas (for example, JavaScript isn't used much at all outside web browsers). Tcl
was designed to be used in many different areas, and it has worked well that
way. Thus, if you have a variety of things to integrate, Tcl is likely to provide the
most flexible platform.

Marjorie: Which tools included in Tcl do you think will be most appreciated by
Linux developers?

John: Well, definitely the debugger—all programmers need that tool. Also, the
Error Checker and the Wrapper will be useful for Linux programmers. Actually,
after thinking about this some more, I think all four of the TclPro tools will be
useful for Linux developers. Linux developers are not that different from other
developers, so I think they will use all the same tools.

Marjorie: Tcl has always been Open Source; TclPro is commercial. How does
Scriptics intend to balance this act in the future?

John: The core code for Tcl and Tk will always be freely available. This is a
commitment we have made to the Open Source community. What we will do
commercially is develop products such as TclPro that aid in Tcl program

development. If we gave all our products away, we wouldn't stay in business
long.

We allow people to download TclPro from our web site with a free 30-day
evaluation license. Since the Linux version became available in beta form at the
beginning of November, it has been the number two platform in terms of
popularity. About 55% of the evaluation downloads are for Windows (95 and
NT). Linux is second with about 21% of the downloads. Solaris, which we had
expected to be the number two platform, is a distant third with only 13% of the
downloads.

Marjorie: Do you think the time will come when free software will do away with
commercial software altogether?

John: No, but I would be happy to be proven wrong.

Marjorie: Some say that with free software, programmers would make their
living by consulting and support.

John: That's an interesting idea, if you think about the personality of someone
doing this. They're most likely going to build something they want to use
themselves, then give it away to others. They tend not to produce other types
of software, leaving many areas open for commercial software development.

I think that's why you see operating system cores, scripting languages, mail
delivery tools, web servers and other things which expert programmers enjoy
using themselves as open source and you don't see enterprise resource
planning applications or even things like word processors and spreadsheets
yet.

Marjorie: Well, there are some applications out there—they are just not very far
along.

John: People like Eric Raymond think we are just at the beginning of the
evolutionary development of open source software, and that all of these other
applications will come about in time. Maybe he's right. My personal hunch is
that open source development is mostly going to be the platform and tool kind
of software.

Marjorie: I think the two examples Eric gives for spreadsheets and word
processors are Maxwell and xxl.

John: Well, I'd be happy to be proven wrong on that too, you know.

Marjorie: Well, I've always wondered how it would work. As you say, people
somewhere along the line have to make a living.

John: I think the whole open source movement is incredibly intriguing and an
amazing and empowering device for the individual. One smart person with a
good idea and a bit of spare time can harness the energy of thousands of other
people and build software that gets used by hundreds, thousands or millions of
people. How many industries in the world can be found where such an
incredible impact can be made by a single person? It's a really neat thing that
smart people with good ideas can change the world.

Marjorie: Someone told me recently that they heard you speak at one of the
conferences and that you didn't feel the open source movement currently
addressed the needs of the unsophisticated or new user. Is that true?

John: I think it is often true. Again, it gets back to the mindset of the open
source developer—that they are typically building programs for themselves. So
when they make programs available to others, they tend to have a level of
documentation and installation appropriate for a fairly sophisticated
programmer rather than for a novice programmer. Again, this is an area where
commercial efforts can fill in the gaps by providing the means to make things
even easier to use. A great example of that in the Linux sphere is the arrival of
companies like Red Hat, Caldera and SuSE which have provided Linux
distributions that are much easier to install than they used to be.

If you look back about two or three years before those companies existed, it
was a much bigger proposition to install Linux—not for the faint of heart!

Marjorie: What motivated you to decide to write a new scripting language in the
first place?

John: Like many other people doing open source stuff, I was solving a problem
of my own. The problem I had was that I was building a whole bunch of
different tools that needed to have command languages in them and I wanted
them to have a powerful command language. I didn't have the time to build a
separate one for each tool. So the idea for Tcl was to build a small interpreter
that I could plug into different tools, thus using the same basic language as the
command language for many different programs. I did that by building an
extensible language; Tcl provides all the basics. It can then be dropped into an
application with all of the application's features hooked into Tcl as extensions
adding to the basic features of the language. That way, I have a very powerful
command language in every program, and all programs share the same core
part of the language—the Tcl interpreter. That was the basic idea. From there, I
added an extension to do graphical user interfaces called Tk. Then we suddenly

discovered you can actually write many interesting Tcl scripts without putting
Tcl inside another application, but instead using it stand alone. With Tcl and Tk
together, you can write great GUIs and other sorts of integration applications.
Once that happened, usage by other programmers just exploded.

Marjorie: One of the first articles we got about Tcl/Tk was about using it to write
a GUI.

John: That ability wasn't the first thing on my mind when I was writing Tcl, but it
turned out that in solving my problem, I had also built something that was very
easy to use for developing general purpose GUIs.

Marjorie: How about some personal type stuff about you? What do you do for
fun?

John: I do things with my family for fun. Between being CEO of a startup and
trying to be a good father to my kids, there isn't a lot of time for anything else.
But I enjoy lots of activities with my family.

Marjorie: Okay, how about where did you go to school, that sort of thing?

John: I was an undergraduate at Yale University in the early 70s and got my
Ph.D. in Computer Science from Carnegie Mellon University in 1980. I was a
professor at Berkeley from 1980 to 1994, when I went to Sun. I ran a Tcl
development team at Sun until spinning out to start Scriptics in January of
1998.

Marjorie: Thanks very much for your time.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Certification for the Software Professional

Tobin P. Maginnis

Issue #60, April 1999

A discussion of the need for certification and a proposal from Sair, Inc. for a
Linux certificate program.

Within the Linux community is a growing discussion concerning the need for
certification. Although certification may not be appropriate for today's Linux
enthusiasts, it will be essential in the future as Linux software is brought into
corporate and government environments. Certification programs and open
source software will become significant as more and more independent
professional programmers integrate Linux and Linux-based software into
standard contract programming. Use of the certification process to develop
minimal standards that are acceptable to the Linux community will also smooth
the coming transition to state board licensure of the Professional Software
Engineer.

When comparing diverse professions such as law, civil engineering,
accountancy, clinical medicine, clinical psychology, and even hairdressing, one
notices they all have a requirement of certification or licensure for the
practicing professional. Computer professionals, on the other hand, do not
have such a requirement.

The main reason for the lack of required credentials is probably that the
computer discipline is only about twenty-five years old and, therefore, it has yet
to come of age in industry or academia. As evidence of this field's youthfulness,
traditional engineers often dismiss computer science as pseudo-engineering.
Programmers stress the art (as opposed to science) of programming and the
art of system administration. Computer science degree programs have been
placed in university liberal arts, business or engineering schools. Meanwhile,
computer scientists themselves cannot agree on even a short list of essential
degree requirements for the Bachelor of Science in Computer Science (BSCS).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In spite of this awkwardness and uncertainty, our profession is doing well. BSCS
graduates command high initial salaries that match or exceed other
engineering disciplines. Computers control much of the country's infrastructure
and this control is dramatically demonstrated by the manpower and resources
currently employed to address the year 2000 problem.

In other words, the debate over certification in general and Linux certification in
particular represents the growing pains of a relatively new profession and
society's need to understand what a software engineer does. To make matters
worse, the U.S. Department of Labor predicts that the computer industry will
have 300,000 more programmer positions than programmers over the next
few years and universities will not be able to fill the predicted demand. In fact,
overall enrollment in computer science programs has decreased slightly in the
last year (see http://stats.bls.gov/oco/ocos110.htm).

The role of certification, therefore, is to provide a method by which employers
can specify and expect a given level of computer system expertise from
employees without requiring them to have an advanced computer science
degree. In a secondary role, certification acts as a supplement to a college or
university degree by providing professional development through continuing
education.

It is now time for the Linux community to shape the future of the software
engineering profession by agreeing upon minimal industry requirements that
will be codified into certification and licensure requirements.

Why a Linux Certificate?

A Linux system and its array of development tools and applications represent a
central core (or “common body”) of knowledge for today's professional
software engineer. Linux “empowers” the software professional with a set of
tools that allows one individual to quickly provide sophisticated, flexible and
reliable system solutions on a variety of computing platforms. These
sophisticated solutions would otherwise require teams of programmers
working months to integrate proprietary and incompatible software modules.

Second, a fundamental concern of corporate and government managers is the
cost of operations—and Linux dramatically reduces this cost. The reduction is
not so much from the idea of free software, but more a result of increased
programmer productivity through complete control over the system. Another
aspect of reduced cost is that the entire Linux community, including business
and government, is continually debugging and improving the program base,
making the system even more cost effective with each new distribution.

A third reason for a Linux certificate comes from state licensing boards.
Licensing is a governmental action that seeks to safeguard the health, safety,
welfare and property of its citizens and businesses through regulation of the
offer of services, review of performance and use of the title “Engineer”.

On February 18, 1998, the Texas Board of Professional Engineers stated its
intention to recognize software engineering as a legitimate sub-discipline. On
June 17, 1998, the Texas Board approved a license for the Professional
Software Engineer, and on August 3, 1998, began licensing software engineers
through a waiver process (http://www.main.org/peboard/).

Given how Linux is used, this is a significant move by the Texas Board of
Professional Engineers. Linux system software allows the independent software
professional to provide a competitive bid, program the application and deliver a
software product quickly. The professional programmer knows that Linux is a
complete and open source software system that will simplify the solution of
any development problem. In other words, from embedded systems through
advanced networked clusters, Linux has already handled many programming
and integration issues. The software developer is free to configure Linux in any
way that best suits the required solution. Hence, Linux is an integral part of the
software engineering process and as State Board licensure continues to grow,
Linux must be a part of the licensing process.

Finally, given the predicted demand for software professionals, a Linux
certificate will provide a valuable aid to employers in discovering productive
software professionals.

The Certification Process

Certification is an assessment of an individual's knowledge and skills in a given
area of expertise. Currently, more than 170 certificates are offered and many of
these have overlapping areas of expertise. These certificates are generally
centered around a vendor's hardware or software product.

The certificate provider typically defines core knowledge and develops texts,
study guides and other course material that cover the defined expertise.
Students enroll in the certificate program and purchase the appropriate texts
and study guides. Supporting materials such as video and/or audio tape
lectures are sometimes offered for an additional fee.

Core knowledge is usually divided into four to six areas, with separate tests for
each area. The goal of such test taking is not to compare one person's test
performance to another's, but to determine whether an individual meets or
exceeds the minimal requirements of the vendor training program. A typical

student (given family and job obligations) takes the tests over a six- to twelve-
month period.

Once the candidate earns a passing grade on all of the required tests, a
certificate is issued authorizing the software professional to list the certificate
with their name. The certificate provider usually offers “perks” that include a
technical hot line or exclusive forum with other certificate holders, a WWW
database listing of member skills and services, plaques, photo ID badges and
logos for business cards and letterheads. The cost of obtaining these
certificates can range from $2,000 to $10,000 US.

Key Certification Benefits

Certificates assure employers that the holder has a specific set of skills and a
minimal level of competence. Company management, in turn, exploits
certification by advertising the employee's skills to their customers and billing
customers more per hour than for non-certified employees.

Certification typically gives an employee more job options and yields better pay.
Certification in a high-demand area can lead to a wage increase of $5 to $10 US
per hour (that's $10,000 to $20,000 US per year) over non-certified computer
professionals.

Many corporate managers consider certification an investment in human
resources and, as a result, they pay for or otherwise assist with certification
costs. The consensus among managers is that certification leads to improved
employee service, reduced problem-solving time, easier assimilation of new
technology and higher overall employee productivity.

It Is Time for Linux Certification

Several issues have come together that indicate it is time for us to offer a Linux
community-based certificate. First, there is a clear consensus among the Linux
community that Linux should continue to grow, receive wide acceptance among
programmers and should offer an alternative to traditional software products.
However, the growth of Linux functionality and acceptance is not a simple
straight line on a graph. Over the last two years and especially within the last
year, Linux distributions have reached a “critical mass” of stability, reliability
and completeness that will accelerate the growth of Linux over the next few
years. Second, the expected rapid growth of Linux will create a need for
business and government managers to have an additional metric in the
selection of new employees as well as an additional metric for employee merit
pay increase and employee promotions. Third, as other State Boards of
Professional Engineers see what has been established in the State of Texas, it
will be only a matter of time before licensing software engineers is common.

Consequently, a Linux certificate will act as a conduit to build a community
consensus on certification and licensing.

Hence, now is the time for a Linux certificate and it is Sair, Inc.'s intention to act
as a conduit for the Linux certificate by describing our certification process in
detail, soliciting critical analysis, debating the specifics and creating a Board of
Advisors. The Board of Advisors will consist of respected Linux community
members given the responsibility of ensuring that the certificate meets minimal
community standards and covers material representative of how Linux is used
in business, government and independent programmer shops. Furthermore,
the Board will recommend actions to advance Linux in the computer industry.

A component of this advancement will be combining the accumulated
certificate knowledge with activism to ensure that the Linux community is
represented at the State Board licensing level.

The Linux Certificate

The proposed Linux certificate will cover four areas: installation, networking,
shells and commands, and security. In the future, and depending on the
directions Linux takes in business, a Linux kernel certificate that covers the
details of kernel development, maintenance and embedded systems will be
considered. There will be tests for each of the four areas and candidates can
take them one at a time or in clusters. Hands-on demonstrations may be an
essential component of some tests.

Examination Topics

A working draft of a comprehensive outline of the proposed certificate material
is at http://www.linuxcertification.org/. Although the outline may be missing a
given topic or detail, a surprising amount of information must still be covered.
Given the large amount of Linux system information that exists, we have yet to
define the exact breadth versus depth of the exam. For example, it is assumed
in the study guides that the student already understands basic operating
system concepts such as memory and process management, interprocess
communication, file management, device drivers, system abstractions, network
layers and so on. A separate section devoted to these concepts may have to be
developed in the future.

Candidates will need additional background study material to support the
“narrow” study guides. Currently, we are employing existing Linux texts to
provide background and related details for the Linux certificate topics. In the
future, we will integrate other on-line documents into the study guide through
either cross reference or additional independent study guides. This means that,
at least initially, the Linux student will require a larger textbook library than that

required for other certificates. (See the web site for a suggested reading list of
background texts.)

Existing study guides (with background text references) are being refined and
more are being developed. They can be reached from the “study guide”
hyperlinks in the working draft outline, for example at http://
www.linuxcertification.org/introqa.html. These guides are in the form of essay
questions followed by answers.

Exam Administration

Members of the Linux community would clearly like to take certification exams
on the Web. (See http://www.linuxjournal.com/HyperNews/get/
certification.html.) Unfortunately, no straightforward method exists for user
validation (fraud prevention) over the Web. Assuming the Linux certification
process becomes a self-sustaining enterprise, we will be developing fraud-proof
technology for web-based exams. Until that time, we will use traditional testing
methods and environments. Initial tests will be based upon “book knowledge”,
while advanced tests may include hands-on demonstrations. Assuming enough
interest, book knowledge tests can be given in commercial testing centers such
as Sylvan Prometric. Testing on advanced material and hands-on
demonstrations will be made available as the need arises.

Milestones for the Linux Certificate

These items need to be completed:

• Solicit community comments. (Initial outline at http://
www.linuxcertification.org/.)

• Complete development of study guides, using selected background texts
and on-line material as reference. (Initial study guides are hyperlinked at
http://www.linuxcertification.org/.)

• Use community comments and Board recommendations to improve
study guides.

• Upon completion of the first study guide, accept candidates for the
certificate.

• Based upon interest, schedule tests while study guides for each area are
developed.

• Upon completion of all study guides, schedule final tests and begin
awarding certificates.

• Begin active consulting with State Boards concerning Linux and its
relationship to licensing.

• Develop continuing education credits and courses.

Conclusion

In planning for the future, we are developing a Linux Certificate now. We want
the certificate to be truly representative of the Linux community, and your
comments are essential in helping us achieve that representation. We believe
certification has significant mutual benefits for employers and employees and
will become a key tool for managers as Linux software is brought into
corporate and government environments.

As more and more independent professional programmers integrate Linux
software into their standard contract programming, we will be promoting Linux
as core knowledge in the State Board of Professional Engineers licensure
process.

Resources

Acknowledgments

Dr. P. Tobin Maginnis (tm@sairinc.com) is an Associate Professor of Computer
Science at the University of Mississippi and the President of Sair, Inc. His areas
of specialization are operating systems, networking, distributed operating
systems and multimedia. See http://www.cs.olemiss.edu/~ptm/ for more
information. As President of Sair, Inc., Dr. Maginnis supervises a programming
shop that provides custom programmed software solutions to clients in the
Chicago area. See http://www.sairinc.com/ for more information.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3124s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3124s1.html
mailto:tm@sairinc.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Arkeia

Charles Curley

Issue #60, April 1999

The product is aimed at professional network administrators, but don't let that
scare you off.

• Vendor: Knox Software
• E-mail: sales@knox-software.com
• URL: http://www.knox-software.com/
• Price: Variable, depending on the number of client computers. The

shareware price is user-defined.
• Reviewer: Charles Curley

Arkeia software presents a backup solution to administrators of heterogeneous
networks of all sizes. From a one-computer shop to a large shop with hundreds
of computers, Arkeia is designed to work on any size IP network. It also works
cleanly with a mix of widely different operating systems. The product is aimed
at professional network administrators, but don't let that scare you off. It is
documented well enough that an amateur who is reasonably knowledgeable
about Linux and his organization's network can set up and run the software.
The product installs easily on Linux and on Windows 95. This is the kind of
product that will make Linux a serious contender as a real-world operating
system.

The server software can run on Linux, Solaris, SGI, AIX, HP-UX or SCO. Give it a
fast connection to your network and one or more fast tape drives, and you are
ready. Clients, in addition to the servers just listed, include Windows NT,
Windows 95 and 98, Novell, VMS, ICL and others. The servers and clients

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

communicate over TCP/IP, so the physical layer of your network doesn't matter.
You don't need Windows sharing or NFS to do your backups.

To review the software, I downloaded the shareware version. I set up the server
on my 333 MHz Pentium II Red Hat 5.0 Linux box and put the Windows 95 client
on my 166 MHz Pentium laptop. They are connected over a TCP/IP network on
Ethernet. The installation and operation manuals are in Adobe PDF format.

The software for Linux comes in gzipped tar files and contains its own
installation software. The installation software inserts the NLSERVD daemon
into the boot sequence and starts it running, so as soon as you finish the
installation you are ready to use the product. Knox does not offer an RPM
version. The software goes into its own /usr subdirectory and uses one file of its
own under /etc, so there is no conflict with an RPM system.

The Windows 95 client software is delivered in a professionally done
InstallShield package. The average Windows user who can install his own
software will be able to install it with no problem. It correctly saves and restores
Windows 95 attributes—something backups over SAMBA to a non-Windows
tape server won't necessarily do. The Windows 95 client will not back up a file
while Word 6 has it open, but will get the automatic backup file if there is one.
This is a failing of Windows 95, not Arkeia; the only workaround is for users to
shut down programs when they leave for the day.

The interface for the software is a GUI using X on Linux. It was a bit
disconcerting when I first saw it but is internally consistent, and I quickly
learned to use it. Tool tips make the software much easier to use.

Figure 1. Backing up a Windows 95 laptop showed an average rate of 20MB per minute and a
compression ratio of 1.4 to 1.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3166f2.large.jpg

Figure 2. The main backup window shows a test backup to the null device. 65MB into the
backup, the average data rate of 81MB per minute shows what the software could do on a
Pentium II processor at 333 MHz. Note the error message with the yellow flag, which will be
logged.

Because the software is clearly designed to support large shops, Arkeia is
conceptually more complicated than typical backup software such as BRU.
Before you can even do a test backup, you must define a number of objects.

• You must define tapes to the system. Provisions are made for writing
labels with bar codes for use with robot arms. (Since I don't have a robot
arm, I was unable to test that part of the system.)

• Tapes are combined into tape pools. The software rotates the tapes within
each pool as needed.

• You also define “savepacks”. These are the computers and directories on
the computers to be backed up in units. For example, I have a savepack
that consists of my laptop. I could easily define a savepack that consists of
several computers (say, a department of a company) or one that consists
of a single directory on one machine (such as an engineer's CAD
drawings).

https://secure2.linuxjournal.com/ljarchive/LJ/060/3166f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3166f2.large.jpg

Customer support, even for the shareware package, is excellent. I made an
error and e-mailed the support address for help. They replied with a
preliminary diagnosis and a request for some log files. I returned those and got
a diagnosis back within 24 hours of my first e-mail. Try that with any large
software vendor. I was favorably impressed. I also made some suggestions for
improving the product. The return e-mail indicated that my suggestions will be
seriously considered. Again, Knox compares favorably with many software
vendors.

One thing I like in a backup package, but is missing, is a manual retension
command. Of course, I can use mt retension on most any UNIX or Linux box.
Arkeia also has a provision for a user-defined command-line operation before
and after each backup. If you like retensions before each use of a tape, add it
here. This is customization I have not seen with other tape backup programs.

Scheduled backups are essential in any production shop. Defining them is
simple and flexible. You can run daily, weekly, monthly and yearly backups.
Periodic backups are defined in terms of savepacks and tape pools. For
unattended backup, you can require a new tape with each backup.

Pricing is reasonable compared to an NT server network backup package. The
shareware version has no set price, but a quarter of contributions over $20 will
be contributed to Software in the Public Interest, the organization which
supports the Debian Linux distribution. Details are readily available on the
Knox web site.

Using Arkeia on Linux means no expensive NT server licenses. It also means
you can find a use for that old 486 box the IT department has been using for a
doorstop because NT on anything short of a Pentium 200 is too slow to use.

Network backup is probably the mission-critical application in any organization.
I have no qualms about recommending Arkeia on Linux for that application. If
you want to investigate this package further, get the manual from Knox's web
site and read it. Better yet, get the manual and the software and use them, as I
did.

Charles Curley (http://w3.trib.com/~ccurley/) lives in Wyoming, where he rides
horses and herds cattle, cats and electrons. Only the last of those pays well, so
he also writes documentation for a small software company headquartered in
Redmond, WA. He can be reached via e-mail at ccurley@trib.com.

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Xi Graphics maXimum cde/OS v1.2.3, Executive Edition

Jeff Alami

Issue #60, April 1999

The target market for maXimum cde/OS is enterprises wishing to run a
commercially supported Linux distribution and the well-known CDE on their
desktop workstations.

• Manufacturer: Xi Graphics
• E-mail: info@xig.com
• URL: http://www.xig.com/
• Price: $199.95 US; $349.95 US, Developer's Edition
• Reviewer: Jeff Alami

On July 10, 1998, Xi Graphics announced their decision to develop and sell their
own distribution of Linux. Xi Graphics' maXimum cde/OS incorporates Red Hat
Linux 4.2, Xi Graphics' Accelerated-X Display Server, and the Common Desktop
Environment (CDE) used in many commercial UNIX installations. The target
market for maXimum cde/OS is enterprises wishing to run a commercially
supported Linux distribution and the well-known CDE on their desktop
workstations.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

I did not receive a boxed set from Xi Graphics, but simply a CD in a jewel case.
My assumption is that they would most likely provide the same box and
documentation as their CDE product, maXimum cde. I installed the distribution
on a Pentium 166 with 24MB RAM, a 4.3GB hard drive and an S3 Trio64 video
card.

Installation

After creating the installation floppies, I booted from the floppies, which
launched the installer program. The installer for maXimum cde/OS is practically
the same as Red Hat Linux 4.2. I used fdisk for partitioning, which can be
difficult for a beginning user, but a competent UNIX system administrator
should not encounter any difficulties. No choices were offered as to which
packages were to be installed; the program simply installed 133MB worth of
software. After installing the necessary packages, the installer ran the
Accelerated-X registration and configuration program. The program did not
autodetect my video hardware; I had to select the video card from a supplied
list.

All things considered, the installation is not difficult for the experienced user.
Given that the target market is not the consumer, this may be warranted, much
like the installation for Caldera OpenLinux. In contrast, the latest version of Red
Hat Linux has an easier installation, with automatic disk partitioning setups,
easy package choices and video autodetection.

The Common Desktop Environment

Configuration

The Accelerated-X configuration program allows the user to choose which video
card, input device and monitor are to be used. If you prefer editing text files,
the configuration information is available in the file /etc/Xaccel.ini.
Configuration for CDE is generally quite difficult compared to other desktop
environments available for Linux. Reading through the CDE manual is
recommended to understand how applications are added and how the
environment can be configured.

Most of the other configuration features are inherited from Red Hat Linux 4.2.
The control panel allows for user configuration, time and date, printer, network,
modem and package configuration.

Features

Xi Graphics maXimum cde/OS features the Accelerated-X Display Server and
maXimum cde, Xi Graphics' CDE implementation. Other featured software
included in the package are Adobe Acrobat Reader 3.0, ImageMagick, Netscape
Communicator 4.05, the Xanim movie viewer and the xmcd CD player. These
applications are integrated into the CDE desktop.

Documentation and Support

I didn't receive any documentation, so I cannot comment on its quality.
However, good sources of documentation would include the maXimum cde
manual (for learning how to use CDE) and the Red Hat Linux 4.2 User's Guide,
available at Red Hat Software's web site.

Technical support for installation of maXimum cde/OS is included at no charge
for 30 days after registration. Corporations can purchase additional support
packages from Xi Graphics. Of course, you can always go to traditional channels
of Linux support, including newsgroups and mailing lists. Since it is so similar to
Red Hat 4.2, many Linux users will be able to provide support.

Conclusion

At under $200, maXimum cde/OS is sold at the same price as maXimum cde
without the Linux distribution. I would suggest getting the product with the
operating system for two reasons. First, the Linux distribution included has
been configured and tested with CDE. Second, you can still install their display
server and CDE product on another distribution, from the /cde directory on the
distribution CD. Of course, license restrictions still apply.

Xi Graphics has provided an excellent product for corporate UNIX users
wanting to take advantage of Linux without a steep learning curve. Most
commercial UNIX administrators are familiar with CDE on desktop
workstations, and expect an integrated and supported package as provided in
maXimum cde/OS. The Accelerated-X Display Server is also a benefit for
graphical workstations, as it provides better speed than XFree86 for many
video cards. Of course, maXimum cde/OS does have its limitations, namely the
lack of glibc support found in the latest Linux distributions.

Jeff Alami is the director of Guardian Consulting Services, a consulting company
specializing in Linux-based e-commerce and accounting solutions. He also
writes Linux articles for 32 Bits On-line Magazine in his spare time. Jeff can be
reached via e-mail at jalami@gcs.bc.ca.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Book Review: LINUX for Dummies, Quick Reference, 2nd

Edition

Harvey Friedman

Issue #60, April 1999

LINUX for Dummies, Quick Reference, 2nd Edition, by Phil Hughes

LINUX for Dummies, Quick Reference, 2nd Edition

• Author: Phil Hughes
• Publisher: IDG Books Worldwide, Inc.
• Price: $15.00 US
• ISBN: 0-7645-0302-2
• Reviewer: Harvey Friedman

I reproduce here the first two paragraphs from the introduction to this book
because I think the author succeeded in doing exactly what he described:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

LINUX for Dummies Quick Reference fills you in on
some of the basic capabilities of the Linux system,
along with an assortment of those that aren't so widely
used—commands and options you would discover
only after years of experience using Linux.

Although this book isn't the whole story on Linux, I
have tried to provide you with the most amount of
useful information possible in a compact reference.
For instance, descriptions of Linux commands include
examples of their usage to illustrate how Linux syntax
really works.

This quick reference is not a quick reference to Linux for Dummies but to the
Linux system, so it is not organized in the same way. I'll try to summarize what
is in it. There are ten parts, an appendix of on-line resources and a glossary.
Part I, “Getting to Know Linux”, covers what Linux is, selecting a Linux flavor,
installing Linux, and fixing installation problems.

Part II, “Understanding the Shell”, covers available shells, basic directory
commands, character quoting, command history, customizing the environment,
directory naming conventions, directory referencing, files associated with a
program, file naming conventions, path names, shell command elements, shell
variables, special characters and startup files.

Part III, “Common Shell Commands”, covers commands for bash and/or the
Korn shell but not csh, tcsh or any other shell. Luckily, most of the commands
described are common to these shells.

Part IV, “Using X/FVWM”, covers an introduction to X, the FVWM Desktop
Anatomy, adding backgrounds, checking out programs under X, examining pull-
down menus, exiting X, modifying window characteristics, mousing with X,
moving around the screen, starting applications, starting X, switching tasks,
using button bars and using keyboard shortcuts.

Part V, “Text Editors and Working with Text”, covers the editors joe, Pico, Emacs,
vi, spell-checking with ispell and formatting with fmt and groff.

Part VI, “Sending and Receiving E-Mail”, covers understanding the pieces of an
e-mail system, using Elm and Pine (the most popular screen-based e-mail
programs), getting your e-mail remotely with POP and working with metamail
files.

Part VII, “Working with the Other Guys”, covers working with MS-DOS files and
media and working with Macintosh media, working with UNIX files and media
and converting data using Linux utilities.

Part VIII, “Networking”, covers transferring files over a network, working
interactively on remote machines and checking network connectivity.

Part IX, “System Administration”, covers adding users and groups, connecting to
an ISP with PPP, starting and stopping the system, kernel modules and
performing system maintenance.

Part X, “Using Regular Expressions”, covers understanding simple regular
expressions and combining expressions, and looks at some examples.

A few awkward explanations I found while reviewing the first edition were
corrected in this second edition, using my suggested phrasings. I have to admit
I missed several other minor problems which I list below:

• On page 20 in the example, both “super” and “stewart.txt” refer to the
same file so should be the same.

• On page 66, it would be nice to see an example of removing strangely
named files, as this is tricky if one has not seen it done.

• On page 107, “:rangess/...”; should be replaced with “:ranges/...”; meta-
notation in an example is confusing.

• On page 198, there is a simple typo under LILO; “than” should be “that”.

Since I didn't notice those when I reviewed the first edition, there may be more
that remain to be fixed.

I expected the Quick Reference to be good because I have used some of the
pocket references Phil Hughes wrote for SSC, and I wasn't disappointed. I let my
wife, who uses an SGI machine at work, look at it and she concluded that this
would be a good reference for UNIX generally, not just for Linux.

It has been my impression that any of the Dummies series of books should lead
an uninformed user in a step-by-step didactic fashion, possibly using some
humor to make difficult concepts more accessible. I think this is one of the
better Dummies books, as it is factually correct and entertaining as well. Of
course, those who grew up using a GUI and don't deal with command-line
interfaces may have to wait for the video.

Harvey Friedman is a computer consultant at the University of Washington,
functioning either as system administrator or statistical analyst. In his leisure
time, he likes playing with Linux and enjoys orienteering, the sport of
navigation. He can be reached via e-mail at fnharvey@u.washington.edu.

Archive Index Issue Table of Contents

mailto:fnharvey@u.washington.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Conix 3-D Explorer

Michael J. Hammel

Issue #60, April 1999

This software, from Conix Enterprises, is an add-on package to Mathematica
that allows you to use OpenGL 1.0-based rendering features directly from
within the Mathematica environment.

• Manufacturer: Conix Enterprises, Inc.

• E-mail: info@conix3d.com

• URL: http://www.conix3d.com/

• Reviewer: Michael J. Hammel

Most likely, many of you know about the large number of graphical features
available in Mathematica (see “Mathematica version 3.0 for Linux” by Patrick
Galbraith, Linux Journal, December 1998), the Swiss army knife of mathematics
software. While its features are fairly good for quite a few situations, I have
always felt it would be nice to combine the power of Mathematica with an
OpenGL-based 3-D interface. Such a connection would offer interesting
possibilities for 3-D demonstrations.

Enter 3-D Explorer. This software, from Conix Enterprises, is an add-on package
to Mathematica that allows you to use OpenGL 1.0-based rendering features
directly from within the Mathematica environment. A simple installation
process allows you to have the software up and running in only a few minutes
and provides endless possibilities.

Since I am not a Mathematica expert, my goal for this review was to find out
how easy it is to install and get started with both Mathematica and Conix 3-D
Explorer. I also set out to verify that the examples provided were both
understandable and functional. Finally, I wanted to see if it was possible to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

create anything interesting with these two pieces of software in the short
amount of time I had to write the review.

Installation

3-D Explorer comes packaged on two 3.5 inch floppy diskettes. The first diskette
is the 3-D Explorer add-on for Mathematica; the other is a set of OpenGL
libraries for use with 3-D Explorer. Installation instructions with the software
were pretty basic—a single sheet of paper. I checked the Conix web site at
http://www.conix3d.com/, and although it contained many samples and other
information, nothing was available on how to read the diskettes. Overall, the
web site does not offer much help specific to the Linux user.

Since the format of the diskettes was not specified, I relied on my UNIX
experience and the knowledge that many commercial distributors seem to like
the DOS format. I mounted the floppies as DOS diskettes. It worked. You can
mount the diskettes with a command that looks like this:

mount -t msdos /dev/fd0 /mnt/floppy

The device you use may differ (fd1 for a second floppy drive, for example) and
the mount point, /mnt/floppy, can be any existing directory that is empty. Once
mounted, you can list the contents of the diskettes to see what is contained in
the gzipped tar file. The installation file name on the first diskette,
3dexp101.tgz, does not match the instructions (3-DExplorer_1.0.tar.gz), but
since only one installation file (plus two text files) is on that diskette, it is not
hard to figure out.

A quick check of contents of the installation file shows that relative paths are
used. That is, the files within the gzipped tar file do not include absolute
directory paths. Unpack this file using the commands:

cd /usr/local/mathematica/AddOns/Applications
tar xvzf /mnt/floppy/3dexp101.tgz

This will unpack the 3-D Explorer files under the default Mathematica AddOns
directory. Doing this guarantees that Mathematica will be able to see 3-D
Explorer when Mathematica starts up.

After you have installed the first diskette, you can start Mathematica to view the
on-line documentation. Help on using GLExplorer is available from the
Mathematica Notebook Help browser. Run Rebuild->Help Index to get access to
this browser as the last step of the installation process. The on-line
documentation states:

To install GLExplorer on a UNIX system, you must have
a functional installation of OpenGL. On Linux systems,
GLExplorer comes with OpenGL for Linux by Conix, but
other OpenGL implementations may also be used.

Three things must be noted here: the first is that the on-line documentation
does not refer to the package as 3-D Explorer but rather GLExplorer, so I will
use the two terms interchangeably. Second, I am not sure GLExplorer works
with other OpenGL implementations without installing the OpenGL package
(the second diskette) from Conix. Third, since it does not appear that the Mesa
libraries work (I did not try with my Xi Graphics OpenGL distribution), you must
exit Mathematica and install the Conix OpenGL diskette before continuing.

In my first attempt to work with 3-D Explorer, I tried to use the Mesa libraries
already installed on my system under /usr/local/lib, but these did not seem to
work. The problem may be that my Mesa installation is not quite up to snuff;
however, when I installed the Conix-supplied OpenGL package, I found a slew
of files I would not have expected with a standard OpenGL distribution. For
example, a directory called /GL was created under /usr/X11R6/lib which
contained shared objects such as GLEngineClient.so.1 and
GLRendererRGB565A8D32.so.1. A quick check with ldd on the executable under
/usr/local/mathematica/AddOns/Applications/GLExplorer/GLLink.exe/Linux
provided the following information:

libGLU.so.1 => /usr/local/lib/libGLU.so.1
libGL.so.1 => /usr/X11R6/lib/libGL.so.1.0
libXext.so.6 => /usr/X11R6/lib/libXext.so.6.3
libX11.so.6 => /usr/X11R6/lib/libX11.so.6.1
libdl.so.1 => /lib/libdl.so.1.7.14
libm.so.5 => /lib/libm.so.5.0.6
libc.so.5 => /lib/libc.so.5.3.12
libGLClientSys.so.1 => /usr/X11R6/lib/libGLClientSys.so.1.0
libXintl.so.6 => /usr/X11R6/lib/libXintl.so.6

Since libGLClientSys.so.1 is contained in the OpenGL distribution from Conix, it
would appear you do indeed have to install that package in order to properly
use 3-D Explorer.

The OpenGL diskette needs to be unpacked from the root directory, for
example:

cd /
tar xvzf /mnt/floppy/cnxgl140.tgz

Again, the file name on the diskette does not match the written instructions on
the single sheet of paper that comes with the diskettes. Additionally, the single
sheet of instructions says to run ldconfig after you install the OpenGL files.
However, the files in the gzipped tar file on the diskette use relative paths that
start with usr/X11R6/lib, so you do not have to do this as long as you first
change to the root (/) directory.

Registration and/or license IDs are not required in order to use this product.
Once the OpenGL package has also been installed, you are ready to try out
GLExplorer. Note that Mathematica uses Motif, but the version I received for
this review was statically linked—Conix's package does not require Motif to
work.

Documentation

The only documentation for GLExplorer is the on-line manual. Even if you have
never used Mathematica, their help system is quite easy to use and includes
hypertext links with expandable/retractable sections. You can execute the
example commands listed in the Help browser by clicking on the cell bracket (at
the right of each cell) with the right mouse button and selecting Kernel-

>Evaluation->Evaluate Cells.

All example uses of GLExplorer covered in the on-line documentation require
that you first run the command

Needs["GLExplorer`GLRenderer`"]

This command starts the GLExplorer rendering engine. Once started, a small
icon (see Figure 1) will appear on your desktop. Although this command is listed
at the start of each example, you need to run the command only once to start
the engine. After that, you can skip this command in each of the subsequent
examples you try.

Figure 1. GLExplorer Engine Icon

Running Mathematica/3-D Explorer

The first thing I noticed about running Mathematica, on its own, was the dialog
box that pops open at start time. This box complained about the fonts not
being installed correctly, but if I clicked on the Continue button in the dialog
everything seemed to work fine. Fonts necessary to run Mathematica are
installed under $MATHEMATICA/SystemFiles/Fonts/Type1 and $MATHEMATICA/
SystemFiles/Fonts/X, where $MATHEMATICA is the top-level directory where
you installed all the Mathematica files. The default for this is /usr/local/
Mathematica. For everything to work right, the Type1 fonts should be listed
prior to the X fonts in your X server's font path.

While looking at the GLExplorer Demos provided, you will find reference to
GLShow, a GLExplorer command. Conversion of Mathematica's 2-D and 3-D
graphics into OpenGL-based graphics is handled through this command. The

command accepts standard Mathematica Show command syntax, making it
fairly easy to make use of OpenGL for interactive graphics display without
having to learn a lot about it.

GLShow immediately opens a new window. This window is small, about
256x256 pixels, but is interactive. You can immediately rotate any 3-D shape
and translate (move around the window) any 2-D or 3-D graph.

Figure 2. Snake Knot Demo

The Snake Knot demo shows how a complex set of formulas can be combined
to produce interesting graphics with both Mathematica and GLExplorer. The
command

gr=ParametricPlot3-D[Evaluate[surf],{s,0,2PI},{t,0,6PI},
PlotPoints->{16,100}, DisplayFunction ->
($DisplayFunction[ReplacePart[#,{EdgeForm[],#[[1]]},1]]&)];

produced the Mathematica graphic shown in Figure 2. Plugging this into
GLShow and setting a number of optional parameters for it,

GLShow[gr,ShadeModel->Smooth,DepthCompression->False,
 Axes->False,AdditionalLights->
 {{{0,-1,-1},RGBColor[0,0,.8]},
 {{-.5,.5,-1},RGBColor[0,.8,0]}}];

produced the image in Figure 3. Note the values PI and -> are used to represent
text that only Mathematica's special fonts can show. Figure 4 shows the same
object rotated and enlarged in the GLExplorer window. Rotations can be done
using simple mouse-button clicks and drags. Enlarging the window will
automatically redraw the object it contains to fit the new window size.

Figure 3. GLShow Display

Apparently, the windows opened by GLShow can be closed only by using the
window manager's window menu Close option. If there is a more appropriate
way to close the windows, I could not find it.

Figure 4. Knot Rotated and Enlarged

OpenGL 3-D Support

3-D Explorer is not a complete implementation of OpenGL. Rather, it offers an
interface that allows direct access to a subset of OpenGL, plus a method of
extending this access to encompass any OpenGL function. In order to use the
existing or extended set of OpenGL primitives and directives, you need to
understand the 3-D Explorer GLGraphics object.

Supported features of OpenGL are those expected for any good 3-D tool. They
include drawing and color primitives, antialiasing, lighting and transformations.
Accessing these primitives is done with the GLGraphics object. The GLGraphics
object allows you to specify associations of points, lines, objects, colors, etc., all
of which can then be viewed using GLShow.

Drawing primitives supported by GLExplorer include (but are not limited to)
points, lines, triangles, polygons, surfaces and cuboids. Color primitives include
RGB/RGBA, CMYK, HSL and gray-scale colors. All drawing primitives can have
their sizes (thickness) and colors set using 3-D Explorer directives such as
PointSize or EdgeForm. Antialiasing, hidden line removal and lighting are all
supported. In fact, any OpenGL capability recognized by the OpenGL glEnable

function can be set using the Enable directive of GLExplorer.

Transformations such as rotation, scaling and translating are supported locally
by GLExplorer. These are handy when used with OpenGL display lists. Display
lists are a method of grouping OpenGL primitives together so they can be rerun
as a single object. This method of grouping provides better efficiency and is
part of the OpenGL specification itself. GLExplorer offers complete access to
this feature.

Texturing of OpenGL objects is supported; however, the demo showing a
texture on a wave (from the on-line documentation) crashed GLExplorer. I was
never able to run this example successfully.

You can extend GLExplorer to encompass any OpenGL function through the
use of the Commands wrapper. This GLExplorer command allows you to call
any OpenGL function from within the format of a Mathematica graphics
expression.

Programming

OpenGL programs can be written directly within Mathematica with the help of
GLExplorer. All of the OpenGL core functions are accessed with the prefix gl,
such as glBegin[GlLineStrip] or glVertex[0,0]. Similarly, the OpenGL Utility library
functions are accessed with the glu prefix. This is just as you would use them in
any other OpenGL application written in C, for example (although C syntax

differs from Mathematica's—the function names are the same). In the case of
windowing commands, GLExplorer prefixes commands with glM, such as
glMCreateWindow[] or glMGetWindowOptions[glwin,ErrorTrapping,ImageSize].

The section in the User's Guide on using these direct access commands to
OpenGL is limited to defining their use. It leaves the explanation of what they
are used for to the canonical texts on OpenGL from Addison Wesley, which are
quite good. If you intend to become more familiar with OpenGL for use with
Mathematica and GLExplorer, I highly recommend these books.

Summary

Overall, the speed of GLExplorer's rendering engine is very good. I use a Cyrix
200 with 64MB of memory and none of the examples in the on-line manuals
took more than a few seconds to generate. They also reacted interactively quite
well—interactive rotation and translation of the displayed images was smooth
and immediate. This is all done with software acceleration; no 3-D hardware
acceleration was used. It should be noted, however, that few lights were used
in the examples and the distributed OpenGL libraries could not be compared to
similar software-accelerated libraries from Mesa or Xi Graphics.

GLExplorer offers the user a method of building an OpenGL-based image from
a command line, step by step. You can even use Mathematica to write an
OpenGL program and run it directly from within Mathematica, then let
GLExplorer handle the image display and interaction for you.

In setting out to write this review, I wanted to discover if a novice user such as
myself could get up and running fairly quickly. As it turns out, with the fairly
good 3-D Explorer documentation and Mathematica's terrific Help browser, I
was able to find my way around both tools quite easily. If you are looking for a
way to integrate your Mathematica notebook graphics with OpenGL, Conix 3-D
Explorer may just be your ticket.

Michael J. Hammel (mjhammel@graphics-muse.org) is a Computer Science
graduate of Texas Tech University, and a software developer specializing in X/
Motif. Michael writes the monthly “Graphics Muse” column in Linux Gazette,
maintains the Graphics Muse web site and the Linux Graphics Mini-HOWTO,
helps administer the Internet Ray Tracing Competition and recently completed
work on his new book The Artist's Guide to the GIMP, published by SSC, Inc. His
outside interests include running, basketball, Thai food, gardening and dogs.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Perl Cookbook

James Lee

Issue #60, April 1999

In this book, Tom Christiansen and Nathan Torkington cover many topics
providing numerous code examples known as recipes (it is a “cookbook”, after
all).

• Authors: Tom Christiansen and Nathan Torkington
• Publisher: O'Reilly & Associates
• E-mail: info@oreilly.com
• URL: http://www.oreilly.com/
• Price: $39.95 US
• ISBN: 1-56592-243-3
• Reviewer: James Lee

Having written programs in Perl for a number of years, I fondly remember
spending many hours leafing through the first edition of O'Reilly's
Programming Perl (also known as “the Camel Book”), an excellent book
covering the Perl programming language up to version 4.0.36. That book was

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

well-written, technically correct and very witty. Two chapters of the first edition
of Programming Perl I was particularly fond of, “Common Tasks with Perl” and
“Real Perl Programs” contained numerous common tasks and real programs
using Perl.

In 1996, O'Reilly published the second edition of Programming Perl, an
excellent book covering all features of Perl including those features new to Perl
version 5. The size of the book expanded from 465 pages in the first edition to
a whopping 645 pages in the second. Many topics new to Perl 5 were added to
the second edition, including a discussion of references and object-oriented
programming. However, due to its size, portions of the first edition could not be
covered in the second. Therefore, parts of the first edition were deleted,
including my favorite “Common Tasks with Perl” and “Real Perl Programs”
chapters.

Perl Cookbook (also known as “the Ram Book”) is a companion to Programming
Perl, expanding the chapters of real Perl programs in the first edition of the
Camel book to a massive 757 pages of thoroughly explained, useful Perl code.
In this book, Tom Christiansen and Nathan Torkington cover many topics
providing numerous code examples known as recipes (it is a “cookbook”, after
all). The introduction claims it is not a tutorial nor a reference, but rather states
“this is a book for learning more Perl”. And so it is.

This is a book for all types of Perl programmers from beginner to expert. If you
are looking for a book with hundreds of examples to cut and paste, or
something that explains in detail how to do many different things using Perl,
this book is for you.

The book starts with recipes to handle Perl's basic data types. Each of the
following five topics gets its own chapter: strings, numbers, dates and times,
arrays and hashes.

Chapter 6 discusses pattern matching and goes into great detail on using Perl's
regular expressions.

Chapters 7, 8 and 9 deal with file access, file contents and directories. Chapter
10 discusses subroutines (check out the nifty programs to sort e-mail at the end
of this chapter).

Chapters 11, 12 and 13 discuss references, packages, libraries, modules,
classes, object and ties. These topics are traditionally difficult to master with
Perl, yet I found these chapters to be well-written and understandable. I was
particularly impressed with the section on using tie at the end of Chapter 13.

Chapter 14 covers database access, including UNIX DBM databases and the DBI
module. Chapter 15 discusses user interfaces from the terminal, the Tk
interface and the Expect programming language.

The remaining five chapters discuss networking with Perl. Topics include
process management and communication, sockets, Internet services, CGI
programming and web automation.

I have found this book to be extremely helpful, technically excellent and loaded
with useful and usable source code. For example, I recently wrote a CGI
program that accepts a floating-point number from the user, and I wanted to
use a regular expression to verify that the number entered was valid. I thought
to myself, “Hmm, I can either create the regular expression myself, or see if this
issue is covered in the Perl Cookbook.” Noting that “Laziness” is one of the
three primary virtues of a Perl programmer, I decided to look in the book. In the
table of contents, I immediately found a recipe titled “Checking Whether a
String Is a Valid Number”. Sensing I was on to something, I turned to page 44
and found the following regular expression to verify correct C-style floating
point numbers:

/^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/

I suppose that, with a bit of time and a lot of testing, I could have come up with
a working regular expression. But I didn't need to—the answer was found in
the Perl Cookbook.

The Perl Cookbook has the answers to many common Perl questions. Need to
find all unique entries in a list? Try page 102. Want to create a hash, but retrieve
the key/value pairs from the hash in the order entered? Turn to page 139. Want
to POP your e-mail from your server? See page 656.

I especially liked Chapter 20, entitled “Web Automation”. Did you know it takes
only five lines of Perl code to submit a form to a CGI program using the GET

method? This example is from page 710:

use LWP::Simple;
use URI::URL;
my $url =
url('http://www.perl.com/cgi-bin/cpan_mod');
$url->query_form(module => 'DB_File', readme => 1);
$content = get($url);

Mirroring a web page takes only two lines of code (from page 724):

use LWP::Simple;
mirror($URL, $local_filename);

Code like this makes Perl the world's most useful programming language.
Examples like these make the Perl Cookbook the most useful Perl book I own.

The book contains a mountain of source code, all of which is available from the
O'Reilly FTP site (ftp://ftp.oreilly.com/published/oreilly/perl/cookbook/). There,
you can find over 130 full-length programs as well as all of the code snippets
from the book.

Since this is a cookbook covering a number of topics, readers looking for in-
depth discussions of the topics mentioned above should be aware of the fact
that they are not covered in minute detail. For instance, the chapter on CGI
programming is a brief description that will be excellent if you have some
knowledge of CGI, but if you are looking for in-depth discussion, you should
check out a CGI book. This makes sense—cookbooks are not tutorials. They
present recipes, with the assumption that you know the basics.

In summary, if you are a Perl programmer, this book is essential. If you are new
to Perl and want to become a Perl programmer, this book is highly
recommended as a tool to learn more Perl. If you are wondering what Perl is all
about and what Perl can do for you, this book deserves a look. If you haven't
heard of Perl, where have you been?

James Lee is the president and founder of Onsight (http://www.onsight.com/).
When he is not teaching Perl classes or writing Perl code on his Linux machine,
he likes to spend time with his kids, root for the Northwestern Wildcats (it was a
long season), and daydream about his next climbing trip. He also likes to
receive e-mail at james@onsight.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

grep: Searching for Words

Jan Rooijackers

Issue #60, April 1999

A command to help you find a specific word or a sentence in a file.

Within Linux (or any other UNIX), many people make use of filters, small
programs (black boxes) that read input from standard input (stdin), do
something with this input, and return the result to standard output (stdout).

Linux has many filters. Some examples are:

• wc: print the number of bytes, words and lines in a file
• tr: translate or delete characters
• grep: print lines matching a pattern
• sort: sort lines in a file
• cut: cut selected fields from a file

The easiest way to learn these filters is to use them. This may seem daunting at
first, since you may not know all the capabilities of these filters. I will describe
the functions of grep so that you can benefit from its power.

I will be using this article (article.txt) as the input file for all the examples.

The Syntax

The syntax of the grep command is as follows:

grep [-[[AB]]num] [-[CEFGVBchilnsvwx]]\
[-e] pattern| -file] [files...]

I use GNU grep Version 2; if you're using another version, you may have slightly
different options. I will touch on only those options I use most. To learn more
about the grep command, see the man page. Variants of the grep command
are egrep and fgrep. grep includes flags to simulate these commands: -E for
egrep and -F for fgrep.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The simplest form of the command is:

grep flip article.txt

This will search for the word “flip” in the file article.txt and will display all lines
containing the word “flip”.

grep also accepts regular expressions, so to search for “flip” in all files in the
directory, the following command can be given:

grep flip *

All lines in all files which contain the word “flip” will be displayed, preceded by
the file name. Thus, the first line of the output will look like this:

article.txt:grep flip article.txt

The line begins with the name of the file containing the word “flip”, followed by
a colon, then the appropriate line.

Sometimes you may want to define the search for special characters or a word
combination. To do this, put the expression between quotes so that the whole
expression/pattern will be treated as one. The command would then look like
this:

grep -e "is the"

I put the -e (i.e., do pattern search) option in this example just for
demonstration purposes. It is not necessary to specify, as it is the default value.

To see the line numbers in which the pattern is found, use the -n option. The
output will look like that shown above, with the file name replaced by the line
number before the colon.

Another option which provides us with a number is the -c option. This option
outputs the number of times a word exists in a file. This article contains the
word “flip” 10 times.

> grep -c flip article.txt
10

grep and speed

You may now be able to think of many ways in which you might use grep. For
any command you use often, speed is important. Normally, grep can do its job
quickly. However, if the search is being done over many large files, the results
will be slower to return. In this case, you can speed up the process by using

either fgrep or egrep. fgrep is used only for finding strings, and egrep is used
for complicated regular expressions.

Conclusion

File names, words, sentences and numbers can all be found quickly using grep.
In addition, using the grep command together with other filters can be very
powerful and prove to be of great value. For example, you could search a
statistics file and sort the output by piping it through the sort and cut

commands (see man pages):

grep ... | sort ... | grep ... | cut ... > result

This has been a quick introduction to get you started and rouse your curiosity
to learn more about grep and other filters.

Jan Rooijackers works for Ericsson Data Netherlands (DSN) as an IT engineer.
One of his favorite hobbies is programming (Tcl/Tk) and trying out new things in
the computer world. He spends as much time as he can with his wife and two
sons. He can be reached at dsnjaro@apskid.ericsson.se.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux 2.2 and the Frame-Buffer Console

Joseph Pranevich

Issue #60, April 1999

Wondering about the new frame-buffer features in the kernel? Mr. Pranevich
gives us the scoop.

Linux is a fascinating and fast-paced beast. It seems like only yesterday the
hardy developers of the Linux kernel were busily putting the finishing touches
on ELF support, loadable modules and SMP (Symmetric Multiple Processing)--
things we take for granted today. In those days, more time was spent on the
critical hurdles, the ones that would turn Linux into the great server platform it
is today. In today's Linux world, more time is spent on the less critical
components of the system: new file systems, television and radio cards and
parallel-port drives. I feel the increased interest in the operating system by the
world's corporations will make even more “non-critical” hardware be supported
in the future.

Linux 2.2 is a milestone for Linux's development. No longer is Linux a niche
operating system—it is a viable solution for the masses. With support for so
many new options, it's no wonder.

Part I. What We Have Today

Text-mode, Linux's most basic output method, is also one area where Linux has
changed little since the “old” days. The text-mode console of Linux 2.0 is pure in
its simplicity with one obvious (and maybe striking) fact: no code for graphical
primitives is in the kernel. The lowest level interface to the text-mode kernel is
as simple as the file stream. Higher level functions, such as would be required
for full-screen text console applications (Pine, etc.), are done through a
superset of the vt100 terminal protocol. Libraries, such as ncurses, are built on
top of this to simplify programming and to provide a sort of terminal
abstraction. Applications written for Linux's text-mode console using this
abstraction can run on just about any terminal. Scroll back and Linux's famous
virtual consoles are not a sophisticated extension of those basic building

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

blocks, but rather an extension provided because of the text-mode driver's
close relationship to the VGA hardware on which it was designed.

Other utilities exist, such as SVGATextMode, which allow us to access some of
the graphical capabilities of hardware in text mode. These utilities generally
allow one to change text resolution, fonts and colors. However, these
extensions directly interface VGA features and do not call on any extensions in
the kernel. Generally, the Linux console is so modular in design that it does not
notice the low-level VGA feature changes. These utilities should not be
confused with SVGALib or the frame-buffer console, as they allow manipulation
only within the hardware's text modes.

SVGALib (SVGA Library)

There is obviously quite a bit more to modern hardware than simple text
modes. As mentioned before, kernel hooks are not provided for accessing
these functions, but many user-space programs and libraries are available that
bypass the kernel altogether to access the hardware beneath. (“User space” is a
term used to describe the limited and protected “space” in which user
programs run. In contrast, “kernel space” routines are generally unprotected
and can cause crashes and other problems. User protections can be removed
in order to allow user programs to access hardware.) Unfortunately for
SVGALib, the most popular alternative, the support API provided is heavily tied
to the features of the VGA hardware, making it difficult to port either the SVGA
library or the end application to any other type of hardware. The other
downside is that this library does not support all VGA hardware at its full
potential, but that can be forgiven due to the turbulent nature of hardware
design. Limitations aside, SVGALib has proven to be a stable and popular
solution to the console problem and is the primary interface used in Quake and
other games.

The X Window System

The final and most popular option for accessing the video hardware under
Linux is through the X Window System, the most common GUI subsystem for
UNIX. The X Window System includes an “X Server” which is similar in purpose
to a Windows-style video driver. In addition to “driver” features, the X server
includes code for running programs over a network and handling many GUI
tasks internally. In this respect, the “driver” portion is not truly separate from
the “server” portion. A program that wishes to access the video hardware
would do so by communicating with the X server through its API.

The first and most obvious disadvantage of this approach is that it would be
difficult, if not impossible, on some setups to run a “console” (full-screen)
application via this method. Second, because of the combined driver/server

features of the X system, servers tend to be very large, making it difficult to
allow programs to run in low-memory situations. The third disadvantage of this
approach is that it is fairly common for companies to profit by selling closed-
source X servers for new hardware. However, the primary advantage of this
system, having a long-standing and cross-platform pillar to base graphical
applications on, seems to outweigh the negatives.

Non-i386 Linux

Thus far, I have managed to not even mention the role frame-buffers play in
current Linux kernels. The frame-buffer console system has been a staple of
several other UNIX systems for quite some time and several Linux flavors, in
particular Linux/m68k and Linux/PPC. The issue on those platforms that made
the frame-buffer console so important is a simple one: not all video hardware
supports a built-in text-mode. On these systems, the frame-buffer console is
not a new luxury which brings up a boot logo, but rather a requirement for
functionality. On these systems, the picture is a tad different. They still have X,
of course, and X is an excellent way of creating applications in a device-
independent fashion. A special X server designed specifically for dealing with
frame-buffer systems has nearly always been available. The picture on those
systems is also simplified, since no library is available that would enable them
to run SVGALib applications.

Security Implications

Under the current implementation, a number of security concerns must be
raised when dealing with the graphics subsystem. It is partly because of these
security implications that the frame-buffer console has become a part of the
Linux 2.2 kernel.

Hardware access to user programs must be provided through a kernel API
which provides a layer of device abstraction. To keep the system secure and
crash-free, the kernel interface must be carefully designed, as it is within the
kernel that the most damage can be done. Access to hardware is dangerous; it
would be quite easy to crash the machine if a user program could access it
directly. Also, badly designed kernel interfaces could reveal sensitive data about
a user, breaches of security, no matter how difficult to exploit, are taken very
seriously in the Linux developer community. While no kernel provisions exist
for direct hardware access, there are certain workarounds which can be used
to circumvent these restrictions—in a way that is as secure as possible.

There are two exceptions to the “no direct access” rule. The first is simple: with
programs run by root, the system administrator (who should generally know
what she is doing) can access any files and any hardware directly. In fact, there
are virtually no limitations as to what root can do. But you certainly don't want

your users having the root password and using it each time they want to run
Quake, do you? The second exception is the solution to this issue: the owner of
a program (generally root) can set a flag called the “setuid bit” (Set User ID) on a
program, allowing regular users to “be” the other user as far as the program is
concerned. Thus, if root owns the file and it has the setuid bit set, that program
will always have root access and therefore will always be able to access
hardware directly. In this special and well-controlled case, end users can run
their Quake or their X servers despite the fact that they normally wouldn't be
able to access the hardware directly.

Note, however, that not all graphical programs will need to be “setuid root” to
operate. X programs in particular do not access any hardware directly. Rather,
they communicate to the X server via an API which then translates what they
want to do onto the video hardware. SVGAlib applications, in contrast, generally
all need to have special permissions to operate properly.

The security implications of having an arbitrary program run as root should be
obvious. Linux does not currently have a method of saying that a particular
program can “just” access any file or “just” access hardware directly—work is
progressing in this area. Instead, a “setuid root” application can do anything,
including shutting down the server. Talk about a denial of service! Thus, these
applications must be very carefully written so that an errant user cannot do
anything that would violate the security of the box. It is up to the administrator
of the site to maintain and ensure these special programs are used only when
absolutely necessary, otherwise gaping security holes will result.

Even a carefully written program can sometimes be cracked via “stack
smashing” to gain root access if a programmer does not make sure to watch his
buffers and use safer routines like strncpy instead of strcpy. In general,
programmers who write “setuid root” applications should be aware of any
buffers used throughout the program. For the record, strcpy and strncpy are
both functions that copy text data (strings) from place to place in memory. The
“n” in strncpy means there is a maximum number of characters to be copied.
Otherwise, it would be possible for a cracker to manipulate data in such a way
that the data being copied is larger than the place to which it is copied and the
excess would overwrite memory. If they are skilled, this excess could include
program code which would then be run to break into a shell or do other
damage—and it would be executed as root.

Part II. Linux 2.2 Implementation

Under the hood, Linux 2.2's text mode was designed to be a more modular
system with defined interfaces and less of a dependency on VGA hardware
internals. The casual observer will not notice either of these improvements.

This is the same text mode we have come to love. However, improvements
were made to allow better serial consoles for machines without video hardware
and to allow for the turning off of virtual consoles, but these features are not
expressly part of the text-mode driver.

Frame Buffers

Frame-buffer devices are the biggest new video feature of Linux 2.2 for i386.
Unlike earlier versions of Linux, it is possible through the frame-buffer device to
access the video hardware of a machine directly and in a device-independent
manner. All the basic graphics primitives are supported, although acceleration
is not generally supported at this time. Exactly how accelerated architectures
will fit in is still a matter of debate. Some point to user-mode programs and
libraries (such as GGI); others believe the best location for at least some types
of acceleration is in the kernel. Note that, in contrast to the text-mode driver,
there is no character cell display—it is handled elsewhere. SVGAlib applications
and, to a lesser extent, X applications can both obtain approximately the same
level of control over video hardware, but they are usually less portable and
more of a security risk.

In addition to those features, it is now possible to access the frame-buffer
devices through the use of device nodes, just like any other device. As an
example, these device nodes, /dev/fd*, can be used to get a screen capture
simply by doing a standard copy command.

Above the frame buffer is the frame-buffer console (fbcon). This is where the
standard vt100+ terminal emulation is implemented. In fact, the emulation is so
good that the end user may not even notice the system is in graphical mode. At
this level, the kernel has a much larger control over fonts and other features
formerly provided through utilities such as SVGATextMode.

Now, all of these features are great, but the major feature that will probably be
the reason most Linux users try out the frame-buffer driver is the boot logo.
Yes, now you can finally have a cute little picture of Tux carrying a beer
whenever you turn on your computer.

Security Implications

Not nearly as many security problems exist under the new system as under the
old. Programmers who write graphical applications do not need to be as careful
as their legacy counterparts, since they are protected by the user-level security
of the kernel. System administrators will also have fewer “setuid root”
applications to track, making their security audits easier. In contrast, there will
be more code in the kernel that could go awry, and kernel developers will need
to keep the new video subsystem as bug-free as the rest of the Linux kernel.

Part III. Advantages of the Frame Buffer

My favorite feature of the new kernel subsystem, if it were to go into wide use,
can be summed up in two words: cross-platform compatibility. Simply put,
applications written to use the frame buffer will be immediately portable to all
Linux platforms. This is in direct contrast to the current SVGALib system which
does have some cross-platform compatibility—but only on systems with VGA-
like hardware. This will, in theory, make compiling any graphical application on
multiple Linux architectures as easy as compiling an application with ncurses is
today.

Bear in mind, however, that this argument does not apply to X applications
which are already cross-platform. Rather, this level of compatibility would help
with X at a somewhat lower level.

Single X Server

Another advantage of having a single level of abstraction for video hardware at
the kernel level is with X servers. Unlike older X servers which needed to
concentrate on the specific features of a class of video cards, frame-buffer-
aware ones can concentrate solely on the networking and other X aspects while
allowing the kernel to handle video specifics. In my perfect world, that would
allow developers more time to look at X issues rather than video issues. If a
developer was still interested in developing video code, he or she could always
look to the kernel for something to do.

The X server for the frame buffer is already available as Xfree86-FBDev and has
shipped with some distributions.

Part IV. Disadvantages of the Frame-Buffer Driver

One of the largest downsides of the new kernel driver system, and the one that
has been getting the most attention, is the question of stability. Will these new
frame buffers impact the outstanding uptimes of modern Linux? The answer is
simply no. One of the glorious things about Linux is that you are generally
never forced to do things you don't want and disabling the frame buffer is as
easy as a recompile (if the distributions even ship with it by default—something
I highly doubt).

It is my opinion that Linux developers reach a higher standard than some other
software developers do. (This might explain why I've never gotten anything
more than teeny bits into the kernel myself.) Even in a worst-case scenario, a
rampant kernel module is only somewhat more dangerous than a rampant
“setuid root” X server. People accept that risk daily.

Lack of Drivers

The new driver system has less supported hardware than its legacy
counterpart. Additionally, the supported hardware is generally in a sub-optimal
or non-accelerated position. In contrast to XFree and to a lesser extent SVGAlib,
that is an order of magnitude less support. The video subsystem today is a lot
like the sound subsystem was yesterday, i.e., it supports very few cards. With
time and patience, developers will no doubt make this new system as robust as
possible.

Lack of Acceleration

Also, the frame buffer is not meant to be a generic base for an acceleration
architecture. While it is likely that better acceleration will be provided in the
future, we may have to wait until that becomes generally available. Alternately,
it is quite likely that the GGI project (General Graphics Interface at http://
www.ggi-project.org/) or some organization will propose and implement a
workaround to this situation. Once again, due to the newness of the system,
not all answers are immediate.

Part V. Other Notes

Red Hat 5.2 (which I use at home and at work) already includes support for the
frame-buffer X server, FBDev. If you are experimenting with this feature of
Linux 2.2 and have Red Hat, this will save you a download/compile cycle.
Unfortunately, at this time there is no easy way to configure this device; I
recommend consulting the documentation. Red Hat 6.0 may include this
feature or make it easier to use.

VesaFB

To those who want to jump right into the frame-buffer console, an option exists
that works with nearly all VGA-compatible video cards: the VesaFB driver. It
does require a VESA 2.0-compatible BIOS. This driver is not a good example of
what the new features of Linux 2.2 can do, but it does allow one to get her feet
wet. In particular, it lacks support for resizing the screen resolution and it
requires the mode to be changed at boot time. In reality, this driver is meant
only as an example driver and your mileage may vary getting it into production
work. Users of Linux on other platforms may have a better idea of how things
should be in the end.

Joseph Pranevich (jpranevich@lycos.com) is an avid Linux geek and, while not
working for Lycos, enjoys writing (all kinds) and working with a number of open-
source projects.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Writing Modules for mod_perl

Reuven M. Lerner

Issue #60, April 1999

Discover the flexibility and power of writing mod_perl modules instead of CGI
programs.

CGI programs are a common, time-tested way to add functionality to a web
site. When a user's request is meant for a CGI program, the web server fires up
a separate process and invokes the program. Anything sent to the STDOUT file
descriptor is sent to the user's browser, and anything sent to STDERR is filed in
the web server's error log.

While CGI has been a useful standard for web programming, it leaves much to
be desired. In particular, the fact that each invocation of a CGI program
requires its own process turns out to be a large performance bottleneck. It also
means that if you use a language like Perl where the code is compiled upon
invocation, your code will be compiled each time it is invoked.

One way to avoid this sort of problem is by writing your own web server
software. Such a project is a significant undertaking, though. While the first web
server I used consisted of 20 lines of Perl, most servers must now handle a
great many standards and error conditions, in addition to simple requests for
documents.

Apache, a highly configurable open-source HTTP server, makes it possible to
extend its functionality by writing modules. Indeed, modern versions of Apache
depend on modules for most functionality, not just a few add-ons. When you
compile and install Apache for your computer system, you can choose which
modules you wish to install.

One of these modules is mod_perl, which places an entire Perl binary inside
your web server. This allows you to modify Apache's behavior using Perl, rather
than C.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Even if you plan to use approximately the same code with mod_perl as you
would with CGI, it is useful to know that mod_perl has some built-in smarts that
caches compiled Perl code. This gives an extra speed boost, on top of the
efficiency gained by avoiding the creation of a child process in which to run the
CGI program.

Over the last year, this column has looked at some of the most popular ways of
using mod_perl, namely the Apache::Registry and HTML::Embperl modules. The
former allows you to run almost all CGI programs untouched, while taking
advantage of the various speed advantages built into mod_perl. HTML::Embperl
is a template system that allows us to combine HTML and Perl in a single file.

Both Apache::Registry and HTML::Embperl offer a great deal of power and allow
programmers to take advantage of some of mod_perl's power and speed.
However, using these modules prevents us from having direct access to
Apache's guts, turning it into a program that can handle our specific needs
better than the generic Apache server.

This month, we will look at how to write modules for mod_perl. As you will see,
writing such modules is more complicated than writing CGI programs.
However, it is not significantly more complicated and can give you tremendous
flexibility and power.

Keep in mind that while CGI programs can be used, often without modification,
on a variety of web servers, mod_perl works only with the Apache server. This
means that modules written for mod_perl will work on other Apache servers,
which constitute more than half of the web servers in the world, but not on
other types of servers, be they free or proprietary.

If portability across different servers is a major goal in your organization, think
twice before using mod_perl. But if you expect to use Apache for the
foreseeable future, I strongly suggest looking into mod_perl. Your programs will
run faster and more efficiently, and you will be able to create applications that
would be difficult or impossible with CGI alone.

Perl*Handlers

CGI programmers have a limited view of HTTP, the hypertext transfer protocol
used for nearly all web communication. Normally, a server receiving a request
from an HTTP client (most often a web browser) translates the incoming URL
into the local file system, checks to see if the file exists and returns a response
code along with the file's contents or an error message, as appropriate. CGI
programs are invoked only halfway through this process, after the translation
has taken place, the file has been found and a new process fired off.

mod_perl, by contrast, allows you to examine and modify each part of the HTTP
transaction, beginning with the client's initial contact through the logging of the
transaction on the server's file system. Each HTTP server divides an HTTP
transaction into a series of stages; Apache has more than a dozen such stages.

Each stage is known as a “handler” and is given the opportunity to act on the
current stage of the HTTP transaction. For example, the TransHandler
translates URLs into files on the file system, a LogHandler takes care of logging
events to the access and error logs, and a PerlTypeHandler checks and returns
the MIME type associated with each document. Additional handlers are called
when important events, such as startup, shutdown and restart occur.

Each of these Apache handlers has a mod_perl counterpart, known by the
collective name of “Perl*Handlers”. As you can guess from this nickname, each
Perl*Handler begins with the word “Perl” and ends with the word “Handler”.

A generic Perl*Handler, known simply as PerlHandler, is also available and is
quite similar to CGI programs. If you want to receive a request, perform some
calculations and return a result, use PerlHandler. Indeed, most applications
that are visible to the end user can be done with PerlHandler. The other
Perl*Handlers are more appropriate for changing Apache's behavior from a
Perl module, such as when you want to add a new type of access log, alter the
authorization mechanism, or add some code at startup or shutdown.

I realize the distinction between Perl*Handlers (meaning all of the possible
handlers available to Perl programmers) and PerlHandlers (meaning modules
that take advantage of Apache's generic “handler”) can be confusing. Truth be
told, confusing the two isn't that big a deal, since the majority of programs are
written for PerlHandler and not for any of the other Perl*Handlers.

As I mentioned above, mod_perl caches Perl code, compiles it once, then runs
that compiled code during subsequent invocations. This means that, in contrast
to CGI programs, changes made in our program will not be reflected
immediately on the server. Rather, we must tell Apache to reload our program
in some way. The easiest way to do this is to send a HUP signal (killall -1 -v httpd
on my Linux box), but there are other ways as well. Another method is to use
the Apache::StatINC module, which keeps track of modules' modification dates,
loading new versions as necessary.

Writing a Simple PerlHandler

As we know, CGI programs are stand-alone programs that are invoked from an
outside process, namely the web server. PerlHandler modules are actually
subroutines within the Apache process; Apache invokes our subroutine when a
certain set of conditions is fulfilled.

Writing a PerlHandler module is not much different from writing any Perl
module. (If you are unfamiliar with writing Perl modules, see the “perlmod”
man pages, or any of the books available on the subject.) We create a module
with a single subroutine defined, called “handler”, shown in Listing 1. This code
has several elements common to many PerlHandler modules.

Listing 1

Listing 1. PerlHandler Module

First of all, the entire module contains a single subroutine, “handler”. We can
define additional subroutines if we want, but usually it is easiest to use the
established standard and default.

Next, notice the handler is invoked with a single argument, which we call $r. It is
an instance of the Apache object, which gives us access to the innards of the
Apache web server. $r is our conduit to the outside world of the HTTP server
and the user's browser. We invoke certain methods to determine the state of
the server and browser and other methods to send output to the user's
browser. Without $r we are somewhat lost, so it is natural that our first action
upon entering “handler” is to retrieve $r.

We also use the -w and use strict programming aides in our program. While
these are normally good ideas for good, clean Perl programs, they are essential
when developing under mod_perl. As we will see later, mod_perl's caching and
persistence means we need to be extra careful with our use of memory, in
order to keep our HTTP server process as slim as possible.

Our handler uses only three methods from $r: content_type, send_http_header
and print.

The first method, content_type, allows us to set or retrieve the “Content-type”
header that will precede the response. Every HTTP response must be described
with such a header, which tells the browser whether the response is an HTML-
formatted text file, a GIF image or a zip file.

Once we have set the “Content-type” header to an appropriate value, we send
all of the headers to the user's browser with the send_http_header method.
Past this point, anything sent to the user's browser will be considered part of
the HTTP response body, rather than the headers that describe that body.

The third method, print, is analogous to the built-in “print” function. However, it
takes into consideration several factors that “print” might not, such as timeouts.
$r->print takes a list of arguments just as the “print” function does. Thus, you
can use

https://secure2.linuxjournal.com/ljarchive/LJ/060/3351l1.html

$r->print("a", "b", "c");

and expect three characters to be sent to the user's browser.

Constants and Return Codes

Once we have finished writing the response, we exit from our module by
returning the OK symbol to the caller. We import OK from Apache::Constants, a
module that provides us with a large number of useful symbols. In order not to
pollute our name space too much, we explicitly request that only “OK” be
imported with no other symbols.

If we were writing a more complicated module, we might use one of the export
tags such as :common and :response, which allow us to import a group of
symbols without having to name them explicitly. Thus, we could use the
statement:

use Apache::Constants qw(:response);

which would import all symbols needed for a response.

Most PerlHandler modules will want their “handler” subroutines to return one
of two symbols: either OK, which indicates that the handler successfully dealt
with the request and no other PerlHandler needs to do anything, or the
DECLINED symbol. If your module's “handler” routine returns DECLINED, it
means “I was unable to do anything with the input I was given and would be
happy if some other PerlHandler would do something.” Often, returning
DECLINED means the default Apache behavior will be applied; if our
PerlHandler were to return DECLINED, Apache would try to read the file named
in the URL and do something with it. By returning OK, we indicate that our
module took care of things, and Apache can move on to the next PerlHandler.

Configuring Apache

Now that we have seen how easy it is to write a PerlHandler module, let's look
at how to install this module on our web server. We do this in the configuration
file, typically named httpd.conf. If your copy of Apache uses three .conf files,
understand that the division between them is artificial and based on the
server's history, rather than any real need for three files. Apache developers
recognized this increasingly artificial division and recently decided that future
versions of the server will have a single file, httpd.conf, rather than three.

Apache configuration files depend on directives, which are variable
assignments in disguise. That is, the statement

ServerName lerner.co.il

sets the “ServerName” variable to the value “lerner.co.il”.

If you want a directive to affect a subset of the files or directories on the server,
you can use a “section”. For instance, if we say:

<Directory /usr/local/apache/share/cgi-bin>
AllowOverride None
Options ExecCGI
</Directory>

then the AllowOverride and Options directives apply only to the directory /usr/
local/apache/share/cgi-bin. In this way, we can apply different directives to
different files.

“Directory” sections allow us to modify the behavior of particular files and
directories. We can also use “Location” sections to modify the behavior of URLs
not connected to directories. Location sections work in the same way as
Directory sections, except that Location takes its argument relative to URLs,
while Directory takes its argument relative to the server's file system.

For example, we could rewrite the above Directory section as the following
Location section:

<Location /cgi-bin>
AllowOverride None
Options ExecCGI
</Location>

Of course, this assumes that URLs beginning with /cgi-bin point to /usr/local/
apache/share/cgi-bin on the server file system.

Installing a PerlHandler Module

All this background is necessary to understand how we will install our
PerlHandler module. After all, our PerlHandler will influence the way in which
one or more URLs will be affected. If we (unwisely) want our PerlHandler
module to affect all the files in /cgi-bin, then we use

<Location /cgi-bin>
SetHandler perl-script
PerlHandler Apache::TestModule
</Location>

This tells Apache we will be handling all URLs under /cgi-bin with a Perl handler.
We then tell Apache which PerlHandler to use, naming Apache::TestModule. If
we did not install Apache::TestModule in the appropriate place on the server
file system and if the package was not named correctly, this will cause an error.

The above example is unwise for a number of reasons, including the fact that it
masks all the CGI programs on our server. Let's try a slightly more useful
Location section:

<Location /hello>
SetHandler perl-script
PerlHandler Apache::TestModule
</Location>

The above Location section means that every time someone requests the URL
“/hello” from our server, Apache will run the “handler” routine in
Apache::TestModule. Because we used a Location section, we need not worry
whether /hello corresponds to a directory on our server's file system.

This is how mod_perl creates a status monitor:

<Location /perl-status>
SetHandler perl-script
PerlHandler Apache::Status
</Location>

Each time someone requests the /perl-status URL from our server, the
Apache::Status module is invoked. This module, which comes with mod_perl,
provides us with status information about our mod_perl subsystem. Again,
because we use a Location section, we need not worry about whether /perl-
status corresponds to a directory on disk. In this way, we can create
applications that exist independent of the file system.

Once we have created this Location section in httpd.conf, we must restart
Apache. We can send it an HUP signal with

killall -HUP -v httpd

or we can even restart Apache altogether, with the program apachectl that
comes with modern versions of the server:

apachectl restart

Either way, our PerlHandler should be active once Apache restarts.

We can test to see if things work by going to the URL /hello. On my home
machine, I pointed my browser to http://localhost/hello and received the
“testing” message soon after. If you don't see this message, check the Apache
error log on your system. If there was a syntax error in the module, you will
need to modify the module and restart the server as described above.

The first time you invoke a PerlHandler module, it may take some time for
Apache to respond. This is because the first time a PerlHandler is invoked on a
given Apache process, the Perl system must be invoked and the module

loaded. You can avoid this problem to a certain degree with the PerlModule

directive, described later in this article.

Results

The subroutine we just created might seem trivial, but it demonstrates the fact
that we can easily modify the behavior of our web server simply by writing a
Perl subroutine. Moreover, since subroutines can contain just about any sort of
Perl code, we have at our disposal all of the Perl modules, operators, functions
and regular expressions that would be available to a stand-alone program.

Indeed, our “handler” routine is simply an entry point to what can be a large,
complex program with other subroutines. Since Perl*Handler modules have
access to Apache at every stage of operation, we can modify anything using
Perl. A growing library of modules that do many common tasks is available, so
that you can spend time on the particulars of your problem, rather than
reinventing the wheel.

Another Module

Let's write another PerlHandler module, but this time let's have it do something
other than return its own output. Just for fun, we will have it turn headlines in a
file into Pig Latin. (In Pig Latin, the first letter of each word is moved to the end
of the word, and “ay” is tacked on to the end.)

We will call our PerlHandler module Apache::PigLatin, which means we will
create a module named PigLatin.pm and put it into the Apache module
subdirectory. The source code is shown in Listing 2.

Listing 2

We install our module with a Directory section in httpd.conf:

<Directory /usr/local/apache/share/htdocs/stuff>
SetHandler perl-script
PerlHandler Apache::PigLatin
</Directory>

Make sure the directive points to an actual directory in your Apache document
tree.

The module introduces several new ideas, but nothing revolutionary. For
starters, we import the constants OK, DECLINED and NOT_FOUND. As we
indicated earlier, we will use OK to indicate that our PerlHandler did something,
and DECLINED to indicate that Apache should apply some other behavior. We
will use DECLINED to ensure our PerlHandler works on HTML-formatted text by
checking $r->content_type. If the MIME type is “text/html”, we will operate on

https://secure2.linuxjournal.com/ljarchive/LJ/060/3351l2.html

the file. If it is a JPEG image, we will refrain from translating it into Pig Latin,
returning DECLINED.

Next, we attempt to open the file from $r->filename. This particular module is
being used as a simple PerlHandler, so we can be sure the translation from URL
to a file name on the file system has been performed. This translation takes
place in the TransHandler stage, which we can modify by writing a
PerlTransHandler, rather than a simple PerlHandler. While it has translated the
URL into a file name on our system, Apache has not checked to see if the file
exists—that is our job. If we cannot open the file, we will assume it does not
exist, returning the symbol NOT_FOUND.

Now things get interesting: we grab the contents of the file and perform a
substitution on headlines—that is, anything between <H\d> and </H\d>, where
\d is a built-in character class matching any digit.

We use .*? to match all characters rather than a simple .*, so as to turn off the
“greedy” feature in Perl's regular expressions. If we were to say .* rather than
.*?, we would match all characters between the first <H\d> and the final </H\d>,
rather than between the first pair, the second pair, and so forth. Greediness is
usually a good thing when working with regular expressions, but can be
frustrating under these circumstances.

We use four options in our substitution, using evaluation (/e), case-insensitivity
(/i), global operation (/g) and the . regexp character to match \n (/s). This allows
us to perform the substitution in one fell swoop, as well as catch any headlines
that might begin on one line and continue on the next one.

Inside the substitution we invoke pl_sent, which is a subroutine defined within
our module. This subroutine is not invoked directly from mod_perl, but is there
to assist our “handler” routine in doing its work.

What's more, pl_sent invokes another subroutine, piglatin_word, which
translates words into Pig Latin. If we were interested in creating a large web
application based on mod_perl, you can see how it would be possible to do so,
creating a number of subroutines and accessing them from within “handler”. C
programmers might think of “handler” as the mod_perl equivalent of “main”,
the subroutine invoked by default. Once in that routine, you can do just about
anything you wish.

The pl_sent routine is interesting if you have never stacked split, map and join
before. We split $sentence into its constituent words across \s+, which
represents one or more whitespace characters. We then operate on each
element of the resulting list with map, running piglatin_word on each word.

Finally, we piece together the sentence in the end, using join to add a single
space between each word. The result is returned to the calling s/// operator,
which inserts the translated text in between the headline tags.

It is a much tougher problem to handle paragraphs, partly because people
often forget to surround paragraphs with <P> and </P>, relying on the fact that
browsers will forgive them if they simply say <P>. In addition, paragraphs
contain punctuation which makes a good Pig Latin translator harder to write.

There is no limit to the kind of filters you can write. Perhaps the most
interesting and advanced are those that use Perl's eval operator to evaluate
little pieces of Perl code inside HTML files. A number of these already exist,
such as Embperl (discussed several months ago) and EPerl. More simply, you
can ensure that every file on your system has a uniform header and footer,
removing the need for server-side includes at the top and bottom of each file.

Reducing Memory Usage

mod_perl is an exciting development that has already made a great many new
applications possible. But there is a trade-off for everything, and mod_perl's
additional functionality comes at the expense of greater memory usage. It is
hard to calculate the additional memory needed for mod_perl, but keep in
mind that Perl can be a bit of a memory hog.

In addition, while lexical (“my” or “temporary”) variables disappear after each
invocation of a Perl module rule via mod_perl, global variables stick around
across invocations. This can be an attractive way to keep track of state in your
program, but it can also lead to larger memory allocations.

For example, if your module creates an array with 10,000 elements, that array
will continue to consume memory even after the program is invoked. This
might be useful in some cases, such as when a complicated data structure is
referenced in each invocation. However, it also means the large structure will
constantly eat up memory, as opposed to only when necessary.

You can reduce memory usage by forcing mod_perl to share memory among
Apache child processes. When you run Apache as a web server, it “preforks” a
number of processes so that incoming connections will not have to wait for a
new server process to be created. Each of these preforked servers is
considered a separate process by Linux, operating independently. However,
Apache is smart enough to share some memory among server siblings, at least
to a certain degree.

mod_perl takes advantage of this shared memory by allowing the various
server processes to share Perl code as well. However, there is a catch: you must

make sure the Perl code is brought into mod_perl before preforking takes
place. Perl modules and code compiled after the split occurs will raise the
memory requirement for each individual server process, without regard to
whether the same code has been loaded by another process.

In order to load code before Apache forks off child processes, use the
PerlModule directive in the configuration files.

If, for example, you use the statement

PerlModule Apache::DBI

in one of the *.conf files, then

use Apache::DBI;

in a PerlHandler module, the latter invocation does not actually load any new
code. Rather, it uses the cached, shared version of Apache::DBI that was loaded
at startup by mod_perl.

You can load multiple modules with PerlModule, using the syntax

PerlModule Apache::DBI Apache::DBII Apache::DBIII

However, you can load only ten modules this way. If you want to load more,
you can use the PerlRequire directive. Strictly speaking, PerlRequire allows you
to specify the name of a Perl program to be evaluated only when Apache starts
up. For example,

PerlRequire /usr/local/apache/conf/startup.pl

will evaluate the contents of startup.pl before forking off Apache child
processes. However, if you include a number of “use” statements in startup.pl,
you can effectively get around PerlModule's ten-module limit.

Remember that PerlModule or PerlRequire is necessary for modules to be
shared among the different Apache sibling server processes, but it is not
sufficient. You will still have to import the module in your own program in order
to reap the benefits.

Conclusion

When I first started to work with mod_perl, I thought it was useful for speeding
up CGI programs and for running filters like Embperl. As I have grown more
dependent on it in my own work, I am amazed and impressed by the power

mod_perl offers programmers looking to harness the power of Apache without
the overhead of external programs or the development time associated with C.

As you can see, writing mod_perl modules is not difficult and is limited only by
your imagination. It does require that you think a bit more carefully about your
programs than when you are working with CGI, since you can affect the Apache
server in ways that will slow it down or otherwise hurt your system's
performance.

Resources

Reuven M. Lerner (reuven@lerner.co.il) is an Internet and web consultant living
in Haifa, Israel, who has been using the web since early 1993. His book Core
Perl will be published by Prentice-Hall in the spring. The ATF home page,
including archives and discussion forums, is at http://www.lerner.co.il/atf/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3351s1.html
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Security Research Laboratory and Education Center

Sofie Nystrom

Issue #60, April 1999

The world-class research center at Purdue University is getting serious about
cutting edge development of security related projects.

Keeping the bandits out is not the only reason you will need educated security
experts to maintain your system in the future. What will happen when the
demand for security administrators is so high your firm cannot afford them? Or
if the total development cost for secure software is more than the debt in the
U.S. alone? Your answer to my last question may be, “We will use open-source
code”--good point! However, you will still need experienced security personnel
to maintain your system.

As most of the industry is struggling to prepare their systems for the year 2000,
academia is facing the problem of educating enough computer scientists.
Government reports predict that in the year 2000, on-line commerce in the U.S.
alone will exceed 15 billion dollars per year, and the sales of security software
will exceed two billion dollars per year. The need for increased training and
research in information security will only expand in the coming years as the use
of wide-area computer networks spreads.

Fighting Information Warfare with Education

As computer crime is increasing, Purdue University in Indiana is addressing the
issue. For the last seven years, the Purdue Computer Science Department has
been the home of the Computer Operations, Audit and Security Technology
(COAST) laboratory. COAST is one of the largest academic research groups and
graduate studies laboratories in practical computer and network security in the
world. The laboratory is expanding into a newly established center.

Purdue's University Center for Education and Research in Information
Assurance and Security (CERIAS as in “serious”) is a pioneer in the area of
information security. This new university center was designed to educate the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

next generation of computer and network security specialists. With projects
encompassing Linux, Solaris, Windows 95/NT, smart cards, iButtons, biometrics,
ATM networks and firewalls, their research will work toward the goal of
reducing the threat of so-called information warfare.

One of a Kind

The director of the laboratory and of the newly founded center, Professor Gene
Spafford, is a computer scientist who has been a major contributor to the
discipline of information security. Spafford is an ACM (Association for
Computing Machinery) fellow and has written several books on information
security. He also helped to analyze and contain the Internet worm in 1998.
Together with 15 faculty members and 40 graduate and undergraduate
students (see Figure 1), he is steering the center toward a common goal: to
provide world-class research and education in information security.

Figure 1. Professors, staff and students in the COAST/CERIAS facility at Purdue University

Currently, the faculty and students are drawn heavily from the computer
science area. However, the center is opening its doors to a diversity of
disciplines (e.g., philosophy, linguistics, political science, industrial engineering,
management, sociology and electrical and computer engineering).

Figure 2. The Graduate Student COAST Laboratory

The laboratory (see Figure 2) and the new center have attracted professors and
students from 13 countries. One reason is that there are few highly competent
academic security laboratories with industry support. The diversity does not
end with nationality—almost 40 percent of the students are female. Security
has drawn the interest of women since the early days, and the number of
female students has been increasing steadily in the last few years.

The research includes audit trails format and reduction, network protection,
firewall and software evaluation, creation of a vulnerabilities database and
testing. Additionally, several undergraduate projects dealing with
authentication and security archive are in progress. The main COAST projects
are described briefly below.

A Different Approach to Intrusion Detection

Intrusion Detection (ID) is a field within computer security that has grown
rapidly over the last few years. The AAFID (autonomous agents for intrusion
detection) project in the COAST laboratory is about intrusion detection.

Traditional intrusion detection systems (IDS) collect data from one or more
hosts and process the data in a central machine to detect anomalous behavior.
This approach has a problem in that it prevents scaling of the IDS to a large
number of machines, due to the storage and processing limitations of the host
that performs the analysis.

The AAFID architecture uses many independent entities, called “autonomous
agents”, working simultaneously to perform distributed intrusion detection.
Each agent monitors certain aspects of a system and reports strange behavior
or occurrences of specific events. For example, one agent may look for bad
permissions on system files, another agent may look for bad configurations of
an FTP server, and yet another may look for attempts to perform attacks by
corrupting the ARP (address resolution protocol) cache of the machine.

The results produced by the agents are collected on a per-machine level,
permitting the correlation of events reported by different agents that may be
caused by the same attack. Furthermore, reports produced by each machine
are aggregated at a higher (per-network) level, allowing the system to detect
attacks involving multiple machines.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3175f4.large.jpg

Figure 3. The Agent Window of the AAFID Prototype

https://secure2.linuxjournal.com/ljarchive/LJ/060/3175f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3175f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3175f5.large.jpg

Figure 4. The Main Window of the AAFID Prototype

The AAFID group consists of ten graduate and undergraduate students within
the COAST laboratory. A prototype implementation (see Figures 3 and 4) can be
found on the AAFID project web page at http://www.cs.purdue.edu/coast/
projects/autonomous-agents.html.

Security Archive

During the past several years, students at Purdue have been maintaining the
Internet's largest on-line archive of security-related tools, papers, standards,
advisories and other materials. The main problem they face is the efficient
management of such highly dynamic information. The group will mirror
constantly changing sites and will maintain the most recent copies of those
sites. Additionally, new sites are continually starting up—new papers, new tools
and more information that must be added to the archive.

The other major concern is being able to find what they are looking for in the
archive. With so much information, it is difficult to navigate through all the data.
The Archive group has used a combination of Red Hat Linux 5.2 and the open
source ROADS (see Resources) document ordering system to build the
prototype. This will transform the FTP-based archive to an HTTP-based

https://secure2.linuxjournal.com/ljarchive/LJ/060/3175f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3175f5.large.jpg

information system, allowing users to search based on different criteria or
enter a Yahoo-like browsing mode. The group always welcomes contributions
and suggestions (security-archives@cs.purdue.edu).

Tripwire

One of COAST's better-known projects is Tripwire. It was primarily a project of
Gene Kim and Professor Gene Spafford. The product is now used worldwide
and is the most widely deployed intrusion detection security tool. Tripwire is an
integrity monitoring tool for Linux and other UNIX systems. It uses message
digest algorithms to detect tampering with file contents that might have been
caused by an intruder or virus. In December 1997, Visual Computing
Corporation obtained an exclusive license from Purdue University to develop
and market new versions of the product. Tripwire IDS 1.3 has been released for
Linux. For more information, see the web site http://
www.tripwiresecurity.com/.

Underfire

The Underfire team consists of seven graduate and undergraduate students.
Their goals are to gain direct experience in the installation, evaluation,
configuration and usage of different firewall systems; to investigate new
technologies for network perimeter defenses, including next-generation
networks such as ATM; and to investigate the integration of host- and network-
based security mechanisms with network perimeter defenses. Underfire is an
ongoing project which began in 1997.

The Underfire team's main goal is to create an architecture for automated
firewall testing. The final product will be an engine that will test a firewall
without human interaction. This will be achieved with a modular system: the
engine, a packet sniffer and scripted attacks. The engine executes the attacks
and uses the packet sniffer, or other networking protocols, to test the success
or failure of the attack. Finally, a report can be automatically generated that
explains the weak points of the firewall based on the attack data.

Having finished the design and initial implementation of the engine, the
Underfire team is currently scripting known attacks. The automatic report
generator is something that will also need to be completed in the future. Until
now, Underfire has taken only protocol level attacks into account; a future step
will be to extend the tests to the application level such as RPC and X11.

Next Generation Authentication

The need to change the old-fashioned login name and password procedure of
authentication is an obvious place to base research for the laboratory. By using

biometrics devices and tokens such as smart cards and iButtons, several
research and application development projects can be conducted in this area.
Security tokens under Linux will provide a wide array of security features for
the multiuser operating system.

One of the COAST students heads the MUSCLE project (Movement for the Use
of Smart Cards in a Linux Environment), one way to integrate security tokens
into the Linux environment. MUSCLE focuses on smart card and biometrics
security under Linux and consists of several projects. The first is standardizing
on a PC/SC-compliant smart card resource manager written in C++, along with
cryptographic libraries based on the Public-Key Cryptography Standards
(PKCS-11 and PKCS-15). The resource manager also allows secure remote
authentication by using secure channels to communicate between multiple
resource managers. The resource manager will be used to develop many
applications, including secure login, ssh, xlock, FTP, TELNET, et al., via pluggable
authentication modules (PAM) along with smart card security.

MUSCLE supports a wide array of smart card readers along with ISO-7816-4-
compliant smart cards. On the web site, you can find many different smart card
specifications, source code for different projects, on-line tutorials and a mailing
list. MUSCLE can be found at http://www.linuxnet.com/.

Enhancing the Linux Audit Trail

COAST graduate students have been studying ways of enhancing audit trails on
Linux systems. Additionally, penetration and vulnerability analysis efforts have
benefited from the use of Linux machines with the enhanced auditing systems.

Figure 5. Network Auditing Trail

Generally, operating systems' audit trails or logs are inadequate for a variety of
applications such as intrusion detection. The students have developed two
different approaches to enhancing the data collected by Linux. One approach
was to use the technique of interposing shared objects to collect new
application-level audit data. Using this technique, a program can be instructed
to record and act upon certain library calls and their arguments without
modifying the binary or source code of the program. (See Figure 6.)

Figure 6. Snapshot of the Kernel Code

Another part of the project involves using a Linux 2.0.34 kernel (see Figure 7.) to
audit low-level network data. This involves adding a mechanism to the kernel to
report network packet headers to user processes. By correlating these data and
intrusion detection systems, host-based intrusion detection systems can detect
low-level network attacks such as “Land”, “Teardrop” and “Syn floods”. This

mechanism uses a version of the existing kernel log code, modified to
accommodate arbitrary binary data.

Vulnerabilities Database and Testing

The vulnerability database and analysis group at COAST is collecting and
analyzing computer vulnerabilities for a variety of purposes. The project
includes the application of knowledge discovery and data mining tools to find
non-obvious relationships in vulnerability data, to develop vulnerability
classifications and to develop tools that will generate intrusion detection
signatures from vulnerability information. One goal of the group is to develop
methods of testing software in order to discover security flaws before the
software is deployed.

Future

In the words of Professor Spafford:

With the increasing use of computers and networks,
the importance of information security and assurance
is also going to increase. Concerns for privacy, safety
and integrity may soon become more important to
people than speed of computation. This represents a
tremendous challenge, but also a tremendous
opportunity for those who seek to understand—and
provide—workable security.

Resources

Sofie Nystrom is a Computer Science undergraduate student at Purdue
University, where she is doing research for COAST laboratory and developing
applications for the use of smart cards and biometrics for Linux. She is also
working for CERIAS and is involved in the Computer Science Women's Network.
She can be reached at sof@cs.purdue.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3175s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Windows/Linux Dual Boot

Vince Veselosky

Issue #60, April 1999

Don't want to give up Windows while you learn Linux? Here's how to use both
on the same machine.

So you've heard great things about Linux: faster, cheaper, more efficient, more
stable. Sounds good. You'd like to try it out, but probably have a lot of time and
data invested in Windows and can't afford to be down while figuring out how to
use Linux for your daily tasks. Windows and Linux can live comfortably on the
same computer, even on the same hard drive. The choice of operating system
can be made when you power on. This is commonly called a “dual boot”
configuration, and one of the most common questions among new Linux users
is how to set it up.

My system is a Pentium II 400MHz with 128MB of RAM and an 11GB EIDE
(actually Ultra-DMA 33 ATAPI, for you hardware gurus) hard drive. The hard
drive had Windows 95 “C” on one big FAT32-formatted C: drive, which is a
typical factory configuration. I tested installs of Red Hat Linux 5.1 and SuSE
Linux 5.2.

Before starting, there are two terms you need to be familiar with: partition and
file system. The disk can be divided into smaller, separate pieces which can
belong to different owners. For dual booting, Windows will own some and Linux
will own others. The word “partition” does not refer to the wall; it refers to the
separated space. Thus, we say Windows is installed “on” the first partition. The
file system is a method of organization. Your hard drive can have different file
systems. The operating system provides the directory tree (also referred to as
“the file system”) as a catalog of available files. Every operating system has its
own type of file system, and other operating systems often don't know how to
read it. Lucky for us, Linux is a versatile operating system and it does
understand the file system used by Windows 95 and Windows 98.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Making Room for Linux

Most factory-installed Windows installations take up all the space on your hard
drive, leaving no room for installing Linux. The first and most difficult thing we
must do is clear some space where Linux can be installed. Linux needs to have
partitions of its own, but Windows does not have the ability to resize partitions.
Ordinarily, this would mean you would have to delete your existing partition
(and everything on it) to make room on the drive and then create partitions of
smaller sizes and reinstall. You can still do this, but there is a better way.

What You Need

Most Linux distributions come with a special tool to allow you to resize or
divide hard drive partitions. Called FIPS, the First (non-destructive) Interactive
Partition Splitter, it is normally found on your Linux CD in a directory called /
dosutils. You will also need a blank, formatted floppy disk to use as a boot disk.
For most older Windows installations, that should be all. However, if you have
Windows 98 or a recent version of Windows 95 with a large hard drive (bigger
than 2GB), you may need some additional tools if you are using the FAT32 file
system.

To check what type of file system Windows is using, open Windows Explorer,
right click on the C: drive and choose Properties. If you see “File System: FAT32”
on the General tab, you will need some additional tools to support this newer
file system.

FAT32 Support Requirements

To adjust your partitions, you will need version 2.0 or higher of FIPS. If the
version included with your Linux distribution is older than this, the latest
version is available for download from the FIPS home page at http://
www.igd.fhg.de/~aschaefe/fips/. If you want to share files between Windows
and Linux (a good idea), you will also need to have version 2.0.34 or higher of
the Linux kernel. Table 1 is a list of Linux distributions known to support FAT32.
If your distribution does not include support, you will need to upgrade the
kernel. Upgrading a kernel is beyond the scope of this article, so check the
documentation included with your distribution or your distributor's web site for
information about how to do that.

Table 1

Preparing Your Drive

Before you can resize your Windows partition, a few steps must be taken to
ensure that the process goes smoothly. First, delete any files from your hard

https://secure2.linuxjournal.com/ljarchive/LJ/060/3192t1.html

drive that are not being used; for example, any old files in the C:\windows emp
folder, and then empty your recycle bin. Next, check your file system for errors
using Scandisk, and compact your hard drive using Defrag. I'll assume you
Windows users know how to do this. When running Scandisk, be sure to check
the box next to “Automatically Fix Errors”. Defragmentation consolidates all
your data at the “front” of the drive to make room at the “back” of the drive for
your new partition.

When both are finished, it would be wise to note how much space is available
on the disk. If this number is less than the amount required to load Linux
(check your distribution's documentation for space requirements), you'll need
to delete more files or uninstall some software to make room.

Using FIPS

Before using FIPS, you must read the FIPS.DOC text file which accompanies the
program. The use of the program is not entirely obvious, and you may need the
background information the documentation provides. Also, while running FIPS
you should carefully read all the messages it displays. They will provide
valuable information on the steps you will need to take next. Most importantly,
FIPS comes with no warranty. Although it has been used safely many times,
there is always the chance it could damage the data on your hard drive. If you
value your data, back it up before you begin.

For safety, create a DOS or Windows boot disk to work from. To do this, click
Start -> Settings -> Control Panel. Double click “Add/Remove Programs” and
select the tab called Startup Disk. Press the button and follow the instructions.

Next, copy the working files for FIPS to the floppy. The files FIPS.EXE,
RESTORRB.EXE and ERRORS.TXT are mandatory. You may also want to copy the
documentation files included with FIPS. When your data is backed up, restart
your computer and boot from the new floppy.

When you arrive at the A:> prompt, type FIPS and press enter. A warning will
appear about using FIPS in multitasking environments like Windows. Since we
booted from a floppy, we are safe, so press enter. FIPS will analyze your
existing partitions. It may pause for a long time at “Checking FAT” and
“Searching for Free Space”; this is perfectly normal, so just wait. The bigger your
hard drive, the longer it will take. When FIPS is done with its analysis, it will
display the results. You may get a warning of something being wrong with your
FAT. If you read the message carefully, you will find that this is normal with
large hard drives and will not prevent FIPS from working properly.

FIPS will then demonstrate how it plans to split the existing partition and you
will have the opportunity to make changes. Do not just press enter. By default,
FIPS will take all of the available free space for the new partition it creates,
leaving your Windows partition with no free space at all. Windows will not run if
it has no free drive space, so you must adjust the partitions. Use the up and
down arrow keys to make large changes (ten cylinders at a time) and the left
and right arrow keys for small adjustments (one cylinder at a time). The size of
the existing partition is shown on the left and the size of your new empty
partition is on the right. In the middle is the cylinder number where the split will
take place. I left about 1500MB for my own Windows partition. Adjust yours
according to your needs, but I would recommend using at least 1024MB for
Windows.

When you are satisfied, press enter. FIPS displays information on the new
partitions and asks permission to write it to disk. Your hard drive has not been
altered at this point. You may choose to write this configuration to disk or re-
edit the partition table. On my machine, when I chose to re-edit I received an
error message that said FIPS couldn't find some files it needed. If this happens
to you, just press ctrl-alt-delete to reboot from the floppy and start over. This
did not cause me any trouble.

When you choose to write the new partitions, FIPS will offer to make a backup
of your existing boot sector—you should definitely do this. The backup file it
creates is only 1KB in size and will be invaluable if anything goes wrong.

After FIPS completes its work, it will display another message stating that you
should run scandisk on your old partition. I found that Windows will sometimes
miscalculate the used and free space on your drive after using FIPS, and
Scandisk will correct this problem. If you choose to restore your original
partition scheme using the RESTORRB utility, you should run Scandisk after this
as well.

After FIPS was done, I received another error. This one said “Memory Allocation
Error, Unable to Load COMMAND.COM”. If you see this, just press ctrl-alt-delete

to reboot and all is well. This should not affect your hard drive.

Finally, you may want to run the Windows FDISK program from your floppy.
This is not necessary, since Linux has its own fdisk program for manipulating
partitions. You will find that your hard drive now contains two “Primary
Partitions” (or “Primary DOS Partitions”). The second one was created by FIPS
out of the free space on your drive. For Linux installation, delete this second
partition, freeing up the space for allocating Linux partitions. (Be careful not to
delete the first one, where Windows lives.)

Linux Install Tips for Large Drives

Once you've made room for Linux on your drive with FIPS, you should be able
to install Linux by following the steps in the installation guide that accompanied
your Linux distribution. Here are a few tips that should help you with the areas
where dual booting might make a difference.

Planning your Partitions

Both the Red Hat and SuSE installation guides have excellent chapters on how
to divide up your hard drive for use by Linux. Personally, I favor the “Keep It
Simple” principle, especially for beginners. I let Windows keep the first partition,
create a second for the entire Linux install, a third for Linux swap space and the
fourth for my /home directory (where data is kept). Having /home on a
separate partition will make things much easier, if you ever have to reinstall
Linux. The size of each partition will depend on your individual situation, but
this should suffice for most folks. However, if your hard drive is larger than
8GB, there is something else to think about—LILO.

Booting with LILO

The usual and recommended method to boot into Linux is using LILO (the
LInux LOader). LILO can install itself in your boot sector and allows you to
choose which operating system you would like at boot time. Due to a technical
limitation, LILO is unable to read data from the hard drive past the 1024th
cylinder—the 8GB mark for modern LBA (Logical Block Addressing) hard drives.

Does this mean you can't use the rest of your drive? Not at all. What it does
mean is that your boot partitions must all live below the 8GB mark, that is,
below cylinder 1024. Thus, if you want Windows to use the first 9GB of your
fancy new 18GB drive, you won't be able to use LILO to boot Linux. Because of
this limitation, Red Hat's Disk Druid tool for partitioning the hard drive will not
allow you to create your Linux boot partition past cylinder 1024. You can still
create the partitions using fdisk, but Red Hat setup will not install LILO if you
do.

Booting from Floppy

It is possible to avoid the entire problem of the 8GB barrier by booting from a
floppy disk. Although this may sound inefficient, it actually works quite well. The
kernel loads into memory from the floppy disk and never accesses the floppy
again, so loading the kernel is slower; but after that, the system runs the same
as if it had booted from the hard drive. The Linux kernel has no difficulty
accessing the end of large hard drives, so it can still reach all the files of your
Linux installation.

The setup program for your distribution will almost certainly ask you to create a
boot floppy during installation. Even if you don't plan to boot from floppy
regularly, you should definitely make a boot disk. If for some reason LILO fails
to install or becomes corrupted, you will have no other way to access the files
on your Linux installation.

Booting with Loadlin

Loadlin is a program that runs under DOS (or Windows 95 in MSDOS mode). It
can load the Linux kernel into memory from the DOS partition. Because it loads
the Linux kernel from the hard drive, there is still a possibility the 8GB barrier
could cause problems, but only if your Windows partition is larger than 8GB
and is almost full. That's not likely at the time of this writing, but who knows—
the next release of Windows might take up that much space by itself.

Frankly, I wouldn't recommend Loadlin to Linux novices because it can be
difficult to configure correctly. If you simply must use it, an excellent Loadlin +
Win95 Mini-HOWTO document available from the Linux Documentation Project
should get you up and running.

Conclusion

Giving Linux a try does not mean you have to buy a whole new computer or
even a new hard drive. With just a little extra effort, you can run both Linux and
Windows without losing any data or any productivity while you learn Linux. I
think you will find it is well worth the effort.

Resources

Vince Veselosky is a computer consultant in the Atlanta, Georgia area, working
mostly in technical support for Microsoft operating systems. He has made it his
mission in life to master Linux before the year 2000. When he's not working
with computers, he's looking for a new girlfriend. Potential girlfriends and
others can reach him via e-mail at vincevski@geocities.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3192s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Focus on Software

David A. Bandel

Issue #60, April 1999

gtksamba, TkSmb, smb2www and more.

I am excited about Samba 2.0 and its new web interface called swat. However,
there is still room for smaller, simpler tools that are found in the Samba
package or do not require a web browser. We will look at a few of these tools
today as well as a few graphical FTP packages.

gtksamba:

http://www.open-systems.com/gtksamba.html

gtksamba is a nice program that aids configuration and testing of the Samba
smb.conf file. The smb.conf file to edit can be specified, if it has a different
name or is located in a directory other than /etc. While not as detailed as swat,
it allows a user with proper permissions to look at and edit smb.conf. This
program appears just as powerful as swat, but does not require a web browser.
Some features planned for this program are not yet implemented, such as the
ability to configure remote machines. For its help, gtksamba uses the Samba
man pages. However, it does not just present the man pages—it parses them to
make finding specific parameters easy. In all, gtksamba is a well-thought-out
program. It requires gtk 1.1.13, glib, Xext, X11, libm and glibc.

TkSmb:

http://www.rt.mipt.ru/frtk/ivan/TkSmb/

A Tcl/Tk interface to the smbclient program in Samba, TkSmb allows browsing
of the “Network Neighborhood” in a box on your screen. Shown are the
neighborhood hosts, the shares on any particular host, the different groups
detected, and when a share is selected, the files in the share. Files and
directories are displayed in black and blue respectively. One security aspect

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

requires you enter your password each time you change shares. A check box to
“remember my password” for the current session would be helpful. It requires
Tcl/Tk 8.0, expect 5.24+ and glibc 2.0.6.

smb2www:

http://us1.samba.org/samba/smb2www/

The smb2www package provides a view of the “Network Neighborhood”
through a web browser and more closely resembles the Microsoft version.
While nice, installation is a little difficult; the script walks you through questions,
but could be a bit more friendly. Different hosts (Windows 9x or NT) show up as
different icons—a nice touch. It requires a working web server (either Apache
or another), Perl and a web browser.

LinPopUp:

http://www.littleigloo.org/

Under Windows, users have the ability to send each other messages if the
messaging facility is turned on. The LinPopUp utility allows Linux Samba servers
to exchange messages with Windows hosts or other Samba servers. It requires
a change to the smb.conf file by root for messages to be received, but they can
be sent without this modification. This facility will also receive messages from
the NT server. It requires gtk 1.0.4+, Xext, X11, libm, Xmu, Xt, SM, ICE and glibc.

tkchooser2:

http://www.cs.columbia.edu/~etgold/software/tkchooser2/

tkchooser2 is another browsing tool that can be used with or without Samba.
The default configuration is for AppleTalk (Netatalk) to be installed; however,
this is easily changed. What this package lacks is a way to configure everything
without opening several files and making changes. While the instructions are
adequate, most newbies will not feel comfortable reconfiguring the package.
Once a package is stable and ready for release, I would consider a configuration
script that walks installers through initial setup a must. It requires Tcl/Tk 8.0.

gftp:

http://www.newwave.net/~masneyb/

gftp provides drag and drop for X. It is a well-done package that will help
anyone move files around the Net. For doing file transfers, gftp is the easiest to
use graphical utility I have seen, and it allows multiple transfers at one time (if

you have the bandwidth for it). Partial transfers can be resumed. Two windows
below the two side-by-side directory windows allow you to watch transfers and
messages from the host. An easy connection manager rounds out this utility.
Utilities like this make it easy for newbies and give them one more reason to
choose Linux. It requires libpthread, gtk 1.1, Xext, X11, lib and glibc.

IglooFTP:

http://www.littleigloo.org/

IglooFTP is another program from littleigloo. It is a graphical FTP package that is
slightly larger than gftp. This one is still in the works, but already looks good. It
is still alpha code, so is not yet as stable as gftp. One nice security feature is the
ability to save a site, and when you connect, have the program request a
password rather than storing it in the rc file. Also, your e-mail address (used as
your anonymous password) is configurable from the preferences box. All in all,
it is a very nice graphical FTP package. It requires gtk 1.1.11+, Xext, X11, libm,
Xmu, Xt, SM, ICE and glibc.

xrmftp:

http://www.mat.uni.torun.pl/~rafmet/

xrmftp is yet another great FTP package. This one allows you to choose
between active- and passive-mode transfers. Four windows include local and
remote directories, a command viewer window and a buffer window. Files can
be “queued up” in the buffer window, and when you have found the files you
want, you can download the buffer. This permits you to look around without
having to wait on a slow modem line while searching for more files. It requires
xforms 0.88, X11 and glibc.

David A. Bandel (dbandel@ix.netcom.com) is a Computer Network Consultant
specializing in Linux. When he's not working, he can be found hacking his own
system or enjoying the view of Seattle from an airplane.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:dbandel@ix.netcom.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Good Ol' sed

Hans de Vreught

Issue #60, April 1999

A nice little command to help you modify files.

When I started using UNIX in 1982, life in the computer world was fairly cruel.
At that time, most programmers were still using line editors. The UNIX line
editor, ed, was a relief in comparison with most line editors of other operating
systems. Its sensible use of regular expressions was a blessing, and the fun part
was that most UNIX tools used the same kind of regular expressions.

Although UNIX had virtual memory, the size of files that ed could handle was
limited; disk space for memory was expensive. For large files, programmers
had to resort to the stream editor, sed. sed reads its input line-after-line and
performs its editing operations line-by-line. In sed, some commands allow use
of multi-lines and so have a holding space, but in general, the amount of
memory needed is small.

Besides the occasional one-line commands, I often wrote sed scripts. In those
days, most system administration scripts were written in sed; awk was too slow
and too big. The power demonstrated by those sed scripts was and still is quite
amazing. They were true works of art—large and completely incomprehensible,
but they got the job done.

Since sed is Turing-complete, it is as powerful as any programming language.
Writing sed scripts that compute certain functions became a sport. Olaf Kirch,
author of the Linux Network Administrator's Guide, says in his preface that he
was proud to have written a prime number generator in sed. My pet script
computes the Ackermann function and is available for anonymous download in
the file ftp://ftp.linuxjournal.com/pub/lj/listings/issue60/2628.tgz along with a
short explanation. It is just like programming in assembler.

Today, sed scripts are totally different—they are much simpler and are almost
always one-liners. Most one-line sed commands (often included in Bourne

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

scripts or used interactively in your shell of choice) modify or delete certain
lines in a file. In some cases, you might still write sed scripts; however, the
commands remain simple. Beside the two operations just mentioned, you also
insert, append and change groups of lines as a block.

The advanced sed commands have disappeared (and I must say I'm glad).
Although these advanced commands made sed powerful, they also made the
scripts unreadable. Today, if you need to do something advanced, you would
use awk or Perl.

Syntax

I will not describe every feature of sed. Instead, I will restrict myself to just
those commands I regularly use. For more information on sed, the best
resource is sed & awk by Dale Dougherty and Arnold Robbins (O'Reilly &
Associates, 1997).

sed commands have the following form with no trailing spaces:

[address][,address][!]command[arguments]

I will begin with the address. An address is either a line number ($ for the last
line) or a regular expression enclosed in slashes. The regular expressions are
similar to the ones you see in vi (well, actually the ex part of vi): “.” (any
character), “*” (any number of the immediately preceding regular expression),
“[class]” (any character in class), “[^class]” (any character not in class), “^”
(begining of line), “$” (end of line) and ''\'' (to escape characters where needed).

A range of lines can be specified by giving two addresses. The “!” after the
address specification excludes that range from being processed. The most
commonly used sed commands are “d” (delete) and “s” (substitute). The delete
command is straightforward; it deletes any line that matches the entire address
specification. Substitute is more interesting:

s/pattern/replacement/[g]

Basically, pattern is just a regular expression, but it has an odd feature: parts of
the pattern can be stored in the replacement. The parts to keep must be
enclosed within the characters “\(” and “\)”. In the replacement part, these
stored parts can be used by specifying “\1”, “\2”, ..., “\9” (the first, the second, ...,
and the ninth stored part). If the entire matched part is to be used, the “&”
character is specified. The g (global) flag can be used to replace all occurrences
of pattern by replacement.

Example

Assume we have a small table of two columns of numbers which we wish to
swap:

s/\([0-9]*\) \([0-9]*\)/\2 \1/

The “[0-9]” part matches any digit and the “*” means that we allow any string of
digits to be matched. Since “[0-9]*” is surrounded by “\(” and “\)”, it is stored.
The first number of the line will be in “\1” and the second one will be in “\2”. In
the replacement, they are recalled: first the second number, then the first.
While it is a bit silly to write a file with just two lines, it is:

#!/usr/bin/sed -f
s/\([0-9]*\) \([0-9]*\)/\2 \1/

The -f flag means that the next argument is a file name containing a sed script.
The way UNIX executes scripts, this means the script name will be used as an
argument of -f (i.e., this file). Here is the one-line equivalent to be used at the
command-line prompt in the shell (the -e flag specifies that the next argument
is a sed command):

sed -e 's/\([0-9]*\) \([0-9]*\)/\2 \1/'

To perform more than one command on a particular range, use { and } to
bracket a block of commands. Assume that in the header of the file, we wish to
replace C++ style comments (“// ...”) with C style comments (“/* ... */”) and we
wish to update the copyright year. A blank line appears after the header, as
shown here:

// Copyright 1997 John Doe
// This is just an example.
...

We can use the following script (note the heavy escaping by the backslashes) to
modify this header:

#!/usr/bin/sed -f"
1,/^$/{
s/Copyright 1997/Copyright 1998/
s/\/\/\(.*\)/\/*\1 *\//
}

These commands will modify the above header to be:
/* Copyright 1998 John Doe */
/* This is just an example. */
...

Insert, Append and Change

The next set of sed commands I often use in scripts are “i” (insert), “a” (append)
and “c” (change). Insert and append are similar in that they both need an
address either before which or after which text is inserted or appended. The

text that is inserted follows on the next lines. All lines of the insert or append
command must be “terminated” by a backslash except for the final line. For
example:

1i\
This is a test\
to insert three lines\
at the beginning

With the change command, we can also specify a range of lines. If we specify
only a single address, only that line will be changed; otherwise, the entire range
will be modified.

Sometimes it is handy to read (“r”) from or write (“w”) to a file. In the case of a
read, we can specify an address after which the file is to be read; in case of a
write, we can specify one address or a range to be written to the file. For
example, to write the lines preceding the first empty line to a file called foo,
type the command:

#!/usr/bin/sed -f 1,/^$/w foo

sed is quite picky about spaces—only one space after “w” or “r” is allowed. Also,
never use trailing spaces in sed commands; it doesn't like them and will give
cryptic errors.

Next and Quit

The last two commands I will discuss are next (“n”) and quit (“q”). The next
command takes a single address. After the specified line is output, the next line
is read and the script resumes at the top. Normally, next commands are found
within blocks of commands (i.e., within curly braces). The quit command also
takes an address as an argument. When sed encounters quit, it immediately
terminates the script without any further output.

Advanced

sed has several other commands, which can be considered advanced
commands. You won't see them in modern sed scripts. Three sorts of advanced
commands are available:

• Conditional commands: in sed, you can define labels by preceding an
identifier (7 characters at most) by a colon (“:”), then using the test (-t)
command to jump to that label. Test checks if substitutions have been
made.

• Multi-line commands: sed has several commands that work with multiple
lines, treating them as if they were a single line with embedded newlines.
These commands make it hard to read sed scripts.

• Holding space commands: sed is capable of saving and exchanging the
current line with a separate line, called the holding space. What is true for
multi-line commands is even more true for commands that handle the
holding space—they truly make your scripts unreadable.

As I said earlier, use sed for one-line commands and simple scripts and awk
and Perl for advanced commands. For those who wish to earn a virtual beer:
write a sed script that computes the factorial function.

Hans de Vreught is a computer science researcher at
Delft University of Technology. He has been using
UNIX since 1982 (Linux since 0.99.13). He likes non-
virtual Belgian beer and is a true globe trotter (already
twice around the world). He can be reached at
J.P.M.deVreught@cs.tudelft.nl.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #60, April 1999

Readers sound off.

LJ Enterprise Solutions

Thanks to Marjorie Richardson for mentioning KDE in the article “Linux and
Enterprise: A Winning Combination” in the January supplement to Linux Journal.
As initiator of the KDE project, I would like to add a few things.

KDE is far more than a desktop, as she seems to indicate. The main targets are
not only users of the standard components (like the window manager or the
startup panel), but also developers. Although it contains a window manager, file
manager and a startup panel (what users usually call “Desktop”), this is only half
the story. KDE is mainly a sophisticated application development framework. It
makes it possible for programmers to create better applications for Linux in a
much shorter time.

The main reason Linux has suffered from few and poor graphical applications
was no free technology was available with which to build them. Every free
software developer had to reinvent the wheel over and over, starting with a
configuration system and a help browser and ending with a printer driver or at
least a PostScript engine. KDE's success and the ever-increasing number of
KDE-based applications demonstrate impressively what effect a desktop
standard makes on productivity, and—even more important—the fun of
programming. Note that “desktop standard” refers to the library level, object
model and common helper applications; it has nothing to do with the way the
windows are decorated or how users launch applications.

Thus, KDE is one answer to the “applications, applications and more
applications” cry she mentions. I am talking about real applications here,
including usable versions of a PowerPoint-like application (kpresenter),
advanced vector drawing tools (killustrator), a document processor (KLyX), two

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

advanced spreadsheets (ksiag and kxcl), a state-of-the-art web browser
(konquerer), news reader, mail client and many smaller utilities such as image
viewers, multimedia tools, games, text editors, et al.

Please have a look at http://koffice.kde.org/ and http://www.kde.org/
applications/ for more information.

—Matthias Ettrich ettrich@troll.no

Hope you liked the article in February's issue, “KDE: The Highway Ahead” by
Kalle Dalheimer —Editor

LJ in Brunei

I cannot believe what happened to me two days ago when I went into a
bookshop in the country Brunei, Darussalam, where to my knowledge I am the
only Linux user. What did I see in the computer magazine section? A Linux
Journal!

Thanks for giving me a great magazine even in a country without Linux.

—Stefanus Du Toit sdt@ultracool.net

Calendar

I liked the article “Take Command: Calendar Programs” by Michael Stutz (LJ,
January 1998), so I installed calendar on my machine. With my system (Red Hat
4.1 and tcsh), I got “unterminated string” errors from entries like “John's
birthday”. This is a consequence of the method by which GNU cpp manages
quotes. I found a good workaround is to include this line:

(calendar >/dev/tty) >& /dev/null

in my .cshrc file instead of just calendar. It does not fix the errors, but it does
throw them away.

—Tony Sumner solon@macaulay.demon.co.uk

Misstatement by LJ Editor

First of all, we at IGEL wish the LJ staff a happy, healthy and successful 1999!

In issue 57 on page 32 (“1998 Editor's Choice Awards”, Best New Hardware—
Corel NetWinder), Ms. Richardson states, “Corel Computer is the first company
to declare Linux ...” This statement is simply wrong and misleading. IGEL was

the first company to introduce a Flash Linux-based Network Terminal/
Computer or Thin Client back in 1994. Linux Journal even tested the unit at the
time and printed a very positive product preview. This unit, then called
Etherminal 3X/4X, is now replaced by the Etherminal W/J Thin Client series,
which began selling much earlier than Corel's NetWinder. The functionality of
Etherminal W and J goes beyond that of the NetWinder and has a much better
price/performance ratio.

I would appreciate a printed correction of this statement, since our product
marketing uses this time and functionality advantage publicly, and we do not
like having to continuously argue against her statement.

On page 75 (“New Products”) is a short announcement about the release of
Etherminal J, and we are very thankful for this mention. The following
statement was cut from our press release:

In addition, Etherminal J supports Citrix MetaFrame
and Citrix WinFrame via the integrated ICA Client for
Linux, and Tekcentric WinCentric via an integrated
WinCentric Client for Linux. RDP support is planned to
be released in the future as well. This makes
Etherminal J the only universal “All in One” Thin Client
Workstation available.

In the same article, the price of the product is now outdated. The new pricing is
strictly based on quantity, ranging from $590 to $899 US. Reseller pricing is
available.

Last, I'd like to offer an article on IGEL as a company, supporting and using
LINUX as its only OS for any product offered now and in the future. We have
some very interesting product plans which will literally take Linux and IGEL's
Flash Linux technology to new highs in 1999.

Thank you for your interest and continuous support!

—Hans L. Knobloch President and CEO, IGEL LLC

My apologies for my misstatement with regards to the NetWinder. The
Etherminal was indeed first. I would like to talk to you more about your
company. —Marjorie Richardson

Re: Linux in Lebanon

These comments are about the article entitled “Linux in Lebanon” by Ibrahim F.
Haddad which appeared in the January 1999 issue.

I was pleasantly surprised to see LJ cover Linux usage in our country and
commend Mr. Haddad on a nicely written article. I would, however, like to point
out that company usage of Linux has been somewhat downplayed. Our
company is almost exclusively a Linux shop, and we have created very large
web sites which are served on Linux machines.

For example, LebHost (http://www.lebhost.com.lb/) is a comprehensive search
engine about anything related to Lebanon, and our main web site offers free
web sites to Lebanese (http://www.greencedars.com.lb/). Both sites are Linux-
based and very heavily visited. We also have dozens of hosted domains on
Linux machines as well.

In our case, it was clearly not a matter of “follow the crowds”, even though
Microsoft software is “freely available” in a pirated form here. We find Linux
much more attractive to use because of performance, flexibility, superb
support and source code availability.

—Edmond Abrahamian, PhD. edmond@greencedars.com.lb

Csound Article

I read the article in February's LJ, “Linux Csound” by David Phillips. I think you
should add a link in the “Resources” section to the Quasimodo Project, http://
www.op.net/~pbd/quasimodo/.

This project is a rewrite of Csound for UNIX, supporting multi-threading, with
enhanced real-time performance, GUI, modular, etc. A first ALPHA (without GUI)
is available now. When this project is finished, it will be absolutely the coolest
Software Synthesizer System that has ever existed.

—Thomas huber@iamexwi.unibe.ch

SSC's Distribution Choice

I am a little confused over which distribution to get and install on my machine.
All seem fine for most tasks. I remembered in a past issue of LJ that SSC uses
the Debian distribution. Why was Debian your choice over other distributions?
Was it because it is an all-volunteer distribution versus commercially-based
distributions such as Red Hat, Caldera and others?

Additionally, if I choose a distribution other than Red Hat, I fear I may not be
able to purchase software products because companies are specifically
alliancing themselves to support only Red Hat instead of all major distributions
(or, rather, certain components used in all distributions). This is reminiscent of
Wintel systems versus Apple. More software was made to support Windows.

People, like vendors, will go where more is offered. Distributions that are not
Red Hat compliant will be left in the dust—a situation that will lead to factions
within the Linux community. Companies need to provide products without
requiring Red Hat be installed.

—Jean Tellier jtellier@cts.com

Yes, our primary reason for choosing Debian was that it is a volunteer effort.
Red Hat is part of the effort to develop standards for Linux that will keep
applications from being distribution-specific. While many companies have
ported their products to Red Hat first, I don't think any have said they will not
support other Linux versions. Informix came out for Caldera first but now
works for the others as well. Corel's NetWinder comes installed with Red Hat,
but Debian also works well on it. I think you can pick whichever distribution you
wish without worry —Editor

Non-root Shutdown Possible with sudo

I saw a question in LJ January 1999 (“Best of Technical Support”) for which I can
provide a suggestion. The utility sudo can be configured to provide non-root
shutdown capability. sudo (su do) basically allows non-root users to execute a
restricted set of commands. It essentially performs an su - root -c command but
can ensure more restrictive access control and does not require you to give out
the root password.

On my desktop, I configure it so that any time I want to run a root command (I
log in under a regular user account called stephen), I just type sudo command,
and it executes it for me without hassling me. Of course, you can configure it to
require passwords, allow only a single command, etc.

More about sudo can be found at http://www.courtesan.com/sudo/.

—Stephen Thomas stephen@thomas.mitre.org

Name Misspelling

You accidentally spelled Jaroslav's name wrong in your article about Csound in
the February issue of Linux Journal. The correct spelling is Jaroslav Kysela. (You
were very close!) Thanks.

—Chris David cdavid@umich.edu

Linux for Macintosh

I have just finished reading Alan Cox's article “Kernel Korner: Linux for
Macintosh 68K Port” (January 1999). An excellent article in an outstanding
publication. I wait quite impatiently each month for LJ to appear in the mail.
Please keep up the broad spectrum of articles—something for the experts and
something for us beginners. Thanks.

—Ron Phinney rphinney@xroadstx.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

More Letters to the Editor

These letters were not printed in the magazine and appear here
unedited.

business plan

Just a quick question (worth printing to next issue?)

Is there any (good) GNU licensed programs to help the creation of
businessplans?

—Jussi Kallioniemi [jukal@teraflops.com]

Invitation to Join Freedom of Choice Project

TO: Representatives of... OS user groups, consumer advocacy orgs., ISD
associations, software vendors and distributors

FROM: James Capone, of the Linux Info Website
Diane Gartner, Co-ordinator of IACT

The Freedom of Choice Project is a co-operative effort between IACT and
James Capone, an IACT member as well as devoted user of Linux, who
created the entire project at his own Linux website. In the project's first
week, over 5000 people had participated in the Freedom of Choice
consumer poll. With help from IACT, James Capone now is expanding the
poll to reach users of _all_ platforms.

As you know, all computer users certainly are affected by an ongoing
problem in the computer market: Microsoft still maintains an exclusive
distributorship with PC makers such as Compaq, Dell, Gateway etc..
Those companies pre-install or “bundle” MSFT software on the majority of
new PCs we buy. Once the MSFT software is pre-installed, we may decide
to delete it and then fight to get a refund, but that approach still won't
get to the root of the problem.

The Freedom of Choice project is our grass-roots, long-term solution. By
using the Internet as it was designed—to bring together small groups like
ours into a larger, stronger and unique network—we're going to defend
the fundamental right of consumers everywhere to choose any and all
software that is installed on the new computers they buy.

We want to give users of all platforms the chance to _send a direct
message_ to the PC makers, to demand that the companies fully respect
every consumer's right to choose. But we need your help to do it!

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Join us as *Project Associates* of the Freedom of Choice project. In the
spirit of teamwork and co-operation, we are asking you to sign your
name to this project, and make a strong commitment to helping the
world's computer users regardless of platform, background, nationality or
expertise.

The Next Step

Please r.s.v.p. to this letter and tell us if you can commit your
organization's resources and name to the Freedom of Choice Project. If
you cannot help in an active role as a Project Associate, then please at
least consider posting links and announcements for us.

Your active participation would include a few, simple volunteer
responsibilities:

1. Devote a small amount of your web space to a “Freedom of Choice”
page on your group's website, to outline the goals/benefits of the project
and to post frequent updates on the project's growth. Just be sure that
your page gives equal emphasis to all OSs and to all computer users
regardless of platform, background, nationality or expertise.

2. Directly contact your own members + associates, urging them to visit
your website's Freedom of Choice page and then to respond to our
Freedom of Choice Poll, so that your group's concerns about software
choice will reach the PC makers with maximum impact.

3. Help us to publicize the project by using your media, political and IT
contacts. Forward the project's official announcements to your contacts,
and urge them to support the project either directly or indirectly.

4. Any other resources or ideas that you'd like to offer....

If you choose to join us as a Project Associates, then with your permission
we will add your name(s) to this same Invitation when we send new
copies to more organizations; your group likewise will be given a
spotlight on our own Freedom of Choice web pages, for the public to see.

The Freedom of Choice Poll is at http://www.angelfire.com/biz2/Linux/
company.html

regards,
Diane Gartner, dgwhiz@earthling.net
James Capone, linuxos@iname.com

Great Article

I really enjoyed reading Alessandro Rubini's article “Software Libre and
Commercial Viability” in the February issue.

http://www.angelfire.com/biz2/Linux/company.html
http://www.angelfire.com/biz2/Linux/company.html

It is often hard to see where things are going in the Linux and Open
Source world, and Mr. Rubini's article was very intelligent and
enlightening with quite a few insights into what's up.

—Robert Lynch
rmlynch@best.com

Re: University of Toronto WearComp Linux Project (Feb 99)

I've used Linux since 0.99, and taken LJ since somewhere around issue 6
or 7. PLEASE PLEASE don't get political on me. The recent article by Dr.
Mann filled the first 3.5 pages with his personal libertarian paranoid
philosophy as it pertains to the use of intelligent devices in society.

I am happy for him to tell us about his project, how Linux allows him to
be “COSHER”, and to describe his applications of Linux. However, I don't
(and don't think most LJ subscribers) give a whit about Dr Mann's
personal politics. To read the first three pages of the article, I suppose I
should start taking apart my telephones, TV's Microwaves, and
temperature-sensing shower heads because there may be a hidden
videocam inside them.

Keep up the good work. I love your mag.

—Bill Menger, William.M.Menger@usa.conoco.com

Corrections

I've been subscribing to L.J. for a few months now, and I eagerly await
each edition.

I think the magazine needs to dedicate more resources toward editing
and reviewing the magazine for errors.

As an example, the latest edition's squid article states Netscape's proxy
server does not support ICP, which is incorrect.

I think the quality of the magazine could be greatly improved if the
editors worked more closely with the authors. As Linux gains in
popularity,

I'm hoping the advertising dollars come in to enable you to continue to
improve the overall quality (and width!) of each issue.

—A Demanding Fan, Jim Ford, jford@aetna.com

Re: BTS

Neil Parker wrote:

Read Joseph Pranevich's article on Linux 2.2 in
Kernel Korner (LJ: December 1998) with interest.
He mentions support for a 'subset of the Linux
kernel' on 80286 and below machines. On this

tack I was wondering if there is anything geared
towards making effective use of ageing 386
systems with 4Meg or so of memory. I have a lab
full of these all running Windows 3.1 and would
like to convert them to Linux if possible. Probably
there are many thousands of similar machines
worldwide.

No, not that I know of. That's a bit out of bounds for ELKS. (Linux for
8086-80286)

Your best option here is to compile a main Linux kernel, even a 2.2 kernel
with the absolute minimum requirements for your hardware. There are
also patches floating around for reducing memory requirements even
further, but I can't give you a pointer right now. Having done that, you
should strip down the a system to the *bare* essentials. No daemons, no
loadable modules, nothing that isn't absolutely necessary. You'll also
want to recompile your X server (Mono, SVGA, or VGA16?) with the
minimum options and no unneeded drivers.

Of course, this will all have to be done on a bigger Linux system,
recompilations on a 386 take *forever*

With all of that done, you'll get a working system. You may need to hack
the X source a tad to not configure things like unneeded mouse drivers
and etc. With any luck, that will fit, but barely. If you run all applications
after that remotely, it might not be so bad.

Make sure you have swap space, Linux 2.2 actually runs faster with it
because it swaps some unneeded bits out. And I've heard that Linux 2.2
would be faster than Linux 2.0 but you might want to check both.
Alternatively, you could look into building it with a Linux 1.0 or 1.2 series
kernel, if your hardware would allow it. And building a libc5 (as opposed
to glibc) system might save you a tad more room. And finally, make
sure that you have no static libs and compile everything shared.

I hope this helps.

Joe Pranevich, jpranevich@lycos.com

letter to editor

At the UW I work with all platforms but for ease of development I've used
Linux since .99pl33

While working on a Journal article (for a medical publication) on computer
security, I bought a copy of WinNT Magazine (Dec. 1998) and came
across some comments about Linux that I think are unfounded, but I
would like some expert and authoritative rebuttals.

/******

On page 35, Craig Barth writes

“According to intelectual property lawyers, the Linux licensing agreement
binds any developers who produce software using components of the
Linux OS (eg. libraries and runtimes) to release the source code for their
additions. This will stop mainstream commerical development dead in its
tracks”

On page 122, Mark Russinovich writes

“... whereas WinNT and all commercial UNIX implement kernel mode
threads, Linux does not.”

“... the schedular cannot preempt the kernel ... Because Linux kernel is
onot preemptable, it is not as responsive to high priority processes as
other kernels are ...”

“... the Linux kernel is not reentrant, which means that only one
processor in a multi mode system can execute kernel code at one time”

“ For the next couple of years, Linux is stuck with being only a valid
choice for small uniprocessor servers ...”

****/

If you could respond with some sources, I would send such back to WinNT
magazine.

thanks,
—Steve, sglanger@u.washington.edu

Intel Red-hat for the LAST time

Several months ago I wrote to you expressing my concerns over certain
packages being made available just for users of the Red Hat distribution
package. When this letter was published in the January issue I though I
might get some feed back but I was amazed to see in the Feb. issue a
letter by Fred Nance praising Red Hat.

I think you have all missed the point!

Yes, Red Hat and all the other distributions are doing very positive work
in promoting LINUX, Without Red Hat several packages would not have
been written and we would have definitely have a smaller user base and
certainly not a significant force against Micro Soft.

How long will it be before one large company sides with Caldera, one
with Suse and one with Red Hat and we all start to make incompatible
packages? If we don't start pulling together soon we will destroy
everything already built up and MS will be laughing all the way to the
bank.

Could Red Hat give me a positive statement that all their packages
including Oracle are compatible with other distributions and they don't
use their own libraries and why was glibc2 picked up by Red Hat before it
was formally released forcing incompatibility issues?

Thank you for your time.

—Bob Weeks

BTS correction: shutting down a Linux machine

I was just reading the “Best Of Tech Support” in the Linux Journal 1999,
and was struck by the “Shutting Down” question, and its answer, since I
have a habit of “unorthodox”(?) ways of shutting down.

Among other things, I don't particularly like the ctrl-alt-del method of
shutdown, mentioned as “the only way... for any user to safely shut down
a linux system is to be physically present at the keyboard and press ctrl-
alt-del.” I've found that the odd DOS user will sometimes reboot a system
because their window is not responding, so I sometimes disable it in
inittab. Also, if this is a “headless” machine with the console on a serial
line, there may not *be* a console to type ctrl-alt-del on.

Here is a reasonably simple, and relatively secure way of solving the
problem (better checking of the arguments might be wiser). Compile the
following, called shutme.c and set the permissions as below (with “user”
replaced by the GID of the user, or of a login group allowed to use
shutdown:

#include <unistd.h>

main(int argc, char **argv)
{
 int i;

 for (i=0; i<argc-1; ++i)
 {
 argv[i] = argv[i+1];
 }

 argv[argc-1] = 0; /* execv linkes a null-terminated list of args */

 execv("/sbin/shutdown",argv);
}

-r-sr-s--- 1 root user 4186 Jan 25 01:31 Monty_only/shutme*

For paranoia, I put this in a directory which was chmod 700 and owned
by the user in question, too.
Then, assuming that directory is in the user's path, they can run

% shutme -rf now

without being root, on most unix machines I've used, including Debian
2.1, and almost certainly Red Hat. A nice thing about this is that any flags
to “shutdown” are available, including the ability to cancel a running
shutdown.
Irix has some pickiness about that, and if Red Hat is similar, then there
are some other options.

It's easy for any root process to initiate a shutdown by sending INIT the
right signal; replacing the above with just

main()
{
 execv("init 6",0); /* or execv("telinit -t 10 6",0); */
}

or, if only shutdown is picky, execv(“reboot”) or execv(“halt”) should be
just as good. The disadvantage of these is that they don't issue a wall to
all the users, but that can be included in the program as well. Running
sync just before is traditional, but init should take care of that without a
hitch in modern times.
There are a few other options which *should* work, and do for some linux
versions:

Make a group of people allowed to run shutdown, say “shutters”, and

chgrp shutters /sbin/sutdown
chmod 550 /sbin/shutdown
chmod +s /sbin/shutdown

and then anyone in “shutters” should be able to run shutdown.
Lastly, if you make an account called shutdown whose UID is 0 (root) and
whose shell is a shell script that runs “shutdown -rf now” (or whatever),
you can give people that password to that account and they can

% ssh host -l shutdown

or

% rlogin ssh -l shutdown

or

% su - shutdown

and so forth.
I have used all of the above on various unix systems, in various states of
security and/or partially-crashedness... I was thinking about it because I
had to reboot a half-wedged SGI which I didn't have the root password
for, but did have root on an NFS server whose disks it was mounting
recently...

Anyway, not meaning to be too picky, but with a name like “best of tech
support,” I think this answer fell below standards. I did learn both about
the “cp --one-file-system” flag from your column this month, so I *do*
appreciate it, by the way, and the info that all zip disks come as partition
#4 was an interesting confirmation of a trend I've noticed.

anyway, hope this helps, Thomas...

—Mark Montague, monty@muggy.gg.caltech.edu

Letter to the Editor ...

On the same day that I received my Linux Journal, I got a PC Connection
periodical. It's a standard PC mail-order catalog, but it seems to assume
that people are running Windows. Are there similar catalogs that cater to
people running Linux/Unix. Like have non-PnP modems, cards that
include drivers for other OSes besides Windows, etc., etc.

—Charles Wheeler, snowwolf@sprynet.com

Article Suggestions

Just a quick suggestion for two articles on subjects that are sorely needed
in the Linux community in my view.

Some of us users have some old DOS and Windows applications that we
still use and there are no Linux alternatives. This makes us having to use
a dual boot system.

Now I have had partial success with Wine in using a specialized
communications program, but I have some DOS apps I would like to run
under emulation that are indeed simple programs and should be
amenable to run under Dosemu. I have not had success with Dosemu in
4 months of trying. I have not been able to find a source that simply
explains how the program works and the theory behind how to get it
running. The readme files, in my opinion, are very rudimentary.

We need some comprehensive articles on how to set up these
applications. Now I know Dosemu has the reputation of just being a hack
that so many people are using to run games but there are people like me
who want to be able to do some useful work with Dos apps, not
necessarily games.

I've had some success with Wine with a specialized communication
program that I use to access my patient database at the hospital I work
for. It is an old Windows 3.1 app that runs good with a little distortion of
the fonts. It is still very usable and negates the need for me to have to
boot to Windows every time I need it. One neat thing is that it uses the
modem under Windows to make a 9600bps connection to the hospital
server and under emulation, I do not see a speed hit whatsoever even
though it is running through the extra layer of emulation.

I would hope you would see fit to find an appropriate author(s) who could
tackle this task and I believe you would be doing a great service to the
Linux community in helping to make Linux more mainstream in being
able to run Dos/Windows apps in a Linux system.

I think the time is right to carry this out as I feel Linux is reaching “critical
mass” and if a person can see that they do not have to give up on being
able to run Dos/Windows programs by migrating to Linux, it might only
give an extra boost in acquiring more Linux users.

You have my permission to edit this to your standards if you see fit to
publish it in the Linux Journal.

Best regards,
—Kurt Savegnago, M.D., ksaves@prairienet.org

No more whinings, please.

I read, from time to time, about user friendly configuration tools for
Linux. The last time I did read about is the Davis Brians Letter on LJ # 58
(feb. '99, pag. 6 “Linux Installation and the Open Source Process”). I'm
sorry, but I totally disagree with the idea that such a tool is essential, nor
useful. The Linux community, the real one, may need tools that help to
spread the knowledge about Linux to neophytes, but don't need
windozian tools at all. Those that need Bill's nightmare simply must stay
with windoze. Linux is the evolution of UNIX (even if not the only one)
and it is light-years far from MS, both in power and flexibility. People not
sufficiently skilled to install Linux from himselves has at least three
choices: 1) to buy a pre-installed system; 2) became a more skilled one
or 3) stay with their best silly O.S. Everyone is free to get his own way
but, please, don't blame others for your incompetence: Linux may be free
(or Open Source or whatever you like to call it) but in the real life nobody
can have hothing without some personal effort.

—Franco Favento, Franco_favento@Generali.com

Intel and RH

I have read Robert's letter on page 94, LJ Jan 1999.

I definitely agree with you that we don't need the Intel-Hat, or sth else
which is another M$ WinDos alike OS.

In the long terms, it maybe comes to the end that there is only one
distribution of Linux surviving in the market, but right now, I hope all the
exisitng distributions work ahead, as this will bring the benefits to all
Linux users.

In fact, all Linux distributions have the same problems: or says, the aims
- they need easier way to install/maintain, and more the better GUI-based
applications for business.

Best,
—Frederic, hongfeng@public.wh.hb.cn

re: Dear ljeditor. This little poem might amuse your readers....

I am a M$ separatist, hooked now on Linux. The reason I switched is
described in the following little poem:

Flamed on the GPS newsgroup (? by Bill Gates), response in rhyme

Somebody said that I lied
That's bullshit, I quickly replied
An honest mistake
Can anyone make
I'll explain, and then you decide

My ThinkPad and Windows were wed
At the factory in the same bed
They shipped 95
And to keep it alive
An upgrade to 98, I ded

98 was a great deal much wurse
I could tell right away it was cursed (some kind of f.king virus)
It choked very hard
When I tried a sound card
The factory defaults I restured

The most outragous abuse
When Netscape I tried to use
Explorer stomped in
And GPF'd me like sin
My computer I had to rebuse

My times not worth much anymore
I'm just an old profes*sor*
With me its my health
Compared to his wealth
His geek thugs are what I deplore

When at the young age of 23
Keats got a bad case of TB
He then wrote some lines
That have help me define
What a loss Gates handed to me

(“When I have thoughts that I may cease to be,
Before my pen has gleaned my teeming brain”)

Better spent my own time would be
Writing for pos-ter-i-te

So, I've tried to put it in rhyme
Think about this in your spare time
And then you will see
What my time's worth to me
To take it away was a crime.

—M David Tilson, mdt1@columbia.edu

Is Linux getting too commercial?

I have a total of four PC's, two at home and two in my office. I have in
both places one PC with an Uncle Bill Gates' system for talking with
electrical engineers, and one PC with Linux system for talking with
physicists. I have decided to keep these machines separate, since Uncle
Bill has constructed a windowing system with an internal search and
destroy program. This program is automatically run as soon as another
system (e.g. Linux) is detected on the hard disk. Do not bother to tell me
how to overcome such programming games, since I so much enjoyed
viewing this program on a friends PC. In an unplanned (by the users) civil
war program, Windows 95 took out NT.

However, I would like to express concern about Linux. After looking over
the shoulder of a student depositing RedHat 5.0 on an office box, I easily
enough installed it again on a box at home. Later I bought some RedHat
“power tools”. I ignored the warning on the box that I would need RedHat
5.2. Then I had to go out and buy RedHat 5.2. My discomfort is not yet
my anger at Uncle Bill for changing the file format in Microsoft Word, thus
increasing the price of talking with electrical engineers. But really, ... 5.0
... 5.2?

I am perfectly willing to pay a reasonable price for packaged software,
without using up my students valuable time searching the overcrowded
web sites for the free versions. But I do see some bad handwriting on the
wall.

Further, when you merely update from 5.0 to 5.2, rather than doing a
fresh install, things that used to work can stop working. My postscript
printer file thought the printer moved from America to Europe. It changed
the internal view of the paper size and forgot to tell me. The menu bars
for increasing the console window size no longer show any words, but I
can use the menus. I merely have to remember what the menus used to
read when they actually had words on them.

I am afraid that when Intel buys into Linux, the commercial outlook will
lessen the quality of the system. Can you get ruined by success?

—Allan Widom, widom@acausal.physics.neu.edu

Re: Small Linux Machines (CyberFlex _isn't_ a Linux machine)

Hi Jeff Alami,

Regarding your statement in 32bitsonline article “Small Linux Machines”

“Which system has the bragging rights of being
the smallest Linux computer around? My guess is
Schlumberger's CyberFlex Open 16K smart card
with the Linux kernel. The computer chip on card
stores card holder information and even biometric
information for secure authentication. Now there's
a small Linux machine.”

I think you are mistaken here. According to the documentation on
Schlumberger's CyberFlex web site, this is a smartcard that runs Java
programs on a Java Virtual Machine under control of a small operating
system called GPOS (General Purpose Operating System). The notion that
the card runs Linux seems to have started with Marjorie Richardson's
claim to that effect in the January 1999 issue of Linux Journal when
granting the 1998 Editor's Choice Award to the Cyberflex. I don't know
whether she has issued a correction to her statement since I haven't
seen the February 1999 issue of LJ. I'll copy her on this message in case
others haven't pointed this out to her.

So it looks like the smallest Linux machine is the one developed from off
the shelf parts by Stanford University Wearables Lab. Now _there's_ a
small machine that's actually running Linux.

Regards,
—Ronald L Fox, rfox@dls.queens.org

See http://www.linuxnet.com/smartcard/index.html
the MUSCLE web site for more about Linux and
smart cards.

Reply to 8/98 Article!

In an 8/98 letter Mr. M. Leo Cooper states that one can Symbolically link
the Netscape cookies file to the NULL device, thus preventing Heinous
WebBots access to this info. (a Most Laudable Goal!)

Mr. Cooper's soultion is thus:

ln -s ~/.netscape/cookies /dev/null

Mr. Cooper has a Great Idea, on My System; however it Fails, for some
Subtle reasons. (ln) will Fail IF: The Second File EXISTS ! In other words,
as Printed, IF /dev/null Exists, then the Link will Fail ! Important: On Most
Unix / Linux systems /dev/null, and /dev/zero are Required for Proper
Operation, therefore, Likely to have been Created and Exist.
All is Not Lost though, here is how I was able to Accomplish the job:

1) Delete the ~/.netscape/cookies File, copy it to a Backup if you Want
the Info, such as: cookies. Sav or cookies. Bak, Then delete cookies!

2) Use this form for the link command:

http://www.linuxnet.com/smartcard/index.html

 (ln -s /dev/null
~/.netscape/cookies)

This procedure worked Flawlessly for Me, /dev/null is Preserved, and a
New @cookies Link is Created under ~/.netscape !
To Test my theory, I logged into a server that I knew was Particularly
Nasty about setting cookies.

After the session I viewed cookies using the editor in Midnight
Commander (a Favorite), and cookies displayed Absolutely Nothing, the
Void that we Want that Uninvited WebBot to See !

This procedure is a little more involved than just piping something like:

ls -l /home/cookies > /dev/null

But Well Worth the effort as “Big Brother” is snooping Relentlessly, and
people have a Right to be Concerned for their Privacy!
Now, what do we do about [Pentium III (c) Intel Inc.] so called “Hardware
Cookies” ? As an engineering student and systems programmer I, and
some colleagues are discussing it!

Sincerely,
—Jim Boedicker, sysdev@swbell.net

spelling error(s).

On page 82 of your March 1999 issue, in the “Red Hat LINUX Secrets,
Second Edition” review, you have 3 spelling errors, or mistyping. In the
first column, around the 4th line down, it says “Linux kernel 2.2.35”, i
believe that that is mistyped. I think it should be 2.0.35. Also, in the
second column, 17th line down, it says “(2.2.35)” again, and 5 words
later, “(2.2.32-34)”. I'm pretty sure Duane Hellums, the author, didnt
mean to type these wrong versions. I just thought i would bring it to your
attention.

—scott miga suprax@themes.org

article corrections

Message-ID:
<Pine.SO4.4.05.9902161119210.9359-100000@colossus.csl.mtu.edu>
I just read the review of “Red Hat LINUX Secrets, Second Edition” on page
82 of the March 1999 Linux Journal, and I'd like to point out a few
problems with the article:

(i) Every time it mentions the kernel, it incorrectly refers to the versions
as 2.2.x, when they should be 2.0.x.

(ii) It says, “Also helpful would be a loadable module for sound card
support to avoid having to manually configure and rebuild the kernel...” I
haven't purchased the book, but if it indeed comes with Red Hat 5.1, as
the article claims, then the kernel is already preconfigured for sound card

use and installs all the modules that Red Hat supports. Red Hat also
provides a nice tool, 'sndconfig', to configure your sound card and modify
the /etc/conf.modules and /etc/isapnp.conf file (if needed).

(iii) It says, “...Linux is in dire need of an intuitive, commercial-quality,
freeware, GUI-based word processor...” While technically not freeware,
both Corel's WordPerfect and Star Division's StarOffice are available for
free for individual, non-commercial use. KDE also comes with a text
editor that provides approximately the same functionality as Wordpad.

—Jeff Bastian, jmbastia@mtu.edu

Freeware vs. mega$ware

Being in the position in my company to “affect the purchase decisions”, I
have encountered some very disturbing trends in the way corporate
world sees and uses IT equipment. As many of you out there I have been
a victim of the “main-stream” systems which means for example that a
$3,500,000 installation by Sun known at the company as “mega-server”
every once in a while gives messages saying “No more users allowed to
log in”. You know - the licensing thing. The database on which the
livelyhood of the company depends is something of a joke. In fact that's a
bunch of databases designed by different vendors that handle various
aspects of production. They can neither be modifyed nor discarded due
to the nature of contracts with their vendors and the sheer amount of
money invested in them. So I am currently involved in a project of
designing a super-database that would join them all in one working
mechanism and would provide a usable interface to the whole system.

You would probably say what can be easier all the tools are avilable for
any platform one would choose. Not so fast. The company went shopping
for yet another vendor to build the database. The final choice was
between (no-no, there was no mentioning Linux!) a company that would
charge us $20,000 for the whole project and a company that would
charge $500,000. (There's no typos in the zeroes, I am talking twenty
thousand vs. half a million dollars.) Now try to guess which company won
the gig. The half-a-million dollar one. Of course. And I voted for it too.
Why? Because the bigger budget means more “petty-cash”, more
restaurant invitations, more business trips etc. Besides some people in
the company are dependent on the commissions... What kind of
commissions do you get off a Linux-based job? $500, at most.

All of this makes me very depressed. There is no way in the world that
Linux can make its way into corporations like this one. But something
happened recently that gives hope. I saw a demo by Silicon Grafics of
their new Intel-based workstations. They come in two flavors: NT and
Linux. And SGI offers full industry-standard support for these machines.
Which is great, because they are not cheap (forget about free).

What I am trying to say is, to make it into the corporate world we may
need not just commercial, but extremely expensive systems. Like
$3,500,000 servers.

Advertising

Regarding Chuck Jackson's letter in the March 1999 issue (in response to
Mr. Havlik's letter), arguing that advertising can easily be skipped, will
this may be true, skipping the ads always interrupts the flow of reading.

The same holds true for letters and articles which are “ ... continued on
page ...”. I don't see any reason why e.g. the letters to the editor aren't
on two consecutive pages in the magazine, but instead are separated by
almost ninety pages (in the March 1999 issue). I hope LJ will try to avoid
this in the future.

I know that most magazines can't do without advertising, however I
would think that the main goal of LJ is to convey information about new
trends to the linux community - not every ad in LJ matches this criterion.

Personally, I subscribed to LJ because of the informative articles, not
because I like the advertising so much, but perhaps there's a way out for
all of us:

I'd like to see a separate section packed with ads, e.g. in the second half
of the magazine - just like the german c't magazine - which reduces the
number of ads in the first half. This has advantages for both groups of
readers, the ones who read the articles and the ones who are interested
in the ads. Articles would be mainly in the first half and would contain
less intrusive advertising (e.g. ads would only precede or follow the
articles, not interrupt them).

—Lars Michael, lmichael@empros.com

Issue 59 editorial comments

Let me briefly state that I have been a loyal subscriber since around
issue 5 and thoroughly enjoy LJ.

I'm a bit disturbed by your comments to Reilly Burke who wrote the “Red
Hat Phenomenon” letter.

“ . . . However, Red Hat does seem to be the most popular distribution
available, so they must be doing something right.”

This sounds exactly like the answer I get when I try to convince users of
Evil Empire software that there are alternatives which are more robust
and feature rich. Reading between the lines, I get the impression that any
distribution which gains market share is a good thing and if one
dominates, it must be the most technically sound. By this logic, we
should all dump Linux and run one of the flavors of Windows. We should
also dump Emacs and LaTex and only use MS Office tools. Clearly they
own the largest market share and are therefore are doing the most thing
right.

A year or two ago I probably would have agreed but we have seen an
astounding increase in Linux coverage in general media. Not just

technical publications devoted to Unix but a broad range of publications
from Byte Magazine and Computer Shopper (both slanted towards MS) to
Dr. Dobb's Journal to mainstream non-technical publications. This is
mainly due to the announcements by major vendors to support Linux
(Sybase, Informix, Corel, etc), and of course Netscape's decision to open
the source to their browser.

I personally use Red Hat and have been happy with it. I will say that I
would not rule out switching to a different distribution if it seemed to
have advantages.

I am also a bit confused as to what Reilly means by “conventional Unix
methods”. I have been using Unix for a number of years and have always
thought that there were two main Unix flavors; SysV and BSD. Vendor
specific Unix implementations are typically based upon one of these base
OSs.

I hope this does not sound too harsh, it is not meant to be. I think you
and all the staff at LJ have been doing a great job.

—John Basso, jbb@msd.ray.com

popular does not equal good

Reilly Burke's letter (March 1999) criticized Red Hat and you responded
that Red Hat is the most popular distribution so they must be doing
something right.

Well, Microsoft must be doing one hell of a lot of things right in that case,
but that does not imply that what they produce is of high quality.

Actually, I did not understand Reilly Burke's criticism of Red Hat as
'difficult to install'. Red Hat 5.2 installed for me with zero hassles. Nor his
remark about Red Hat having a 'strange implementation' (unclear what
that means). As a UNIX user since version 6 in 1975 and a Linux user
since 1995, first using Slackware, now using Red Hat, I have always
found all UNIXes to be arcane but very sound. Usually, when someone is
criticizing a given UNIX or given text editor, or a given whatever, it is
because they are used to something else and are not making room for
the learning curve.

That being said, we all know that we have a task ahead of us in
developing easier install shells both for the Linux OS and for Linux
applications, as well as continued work to agree upon a File Hierarchy
Standard and Control Panel for GUI-based System Administration.

regards,
—Dennis G. Allard, allard@oceanpark.com

editors reply

I the March 1999 issue your reply to Reilly Burke is quite assinine:

“Sorry, you will have to ask Red Hat about their policies. I am not in their
confidence. However, Red Hat does seem to be the most popular dis-
tribution available, so they must be doing something right. —Editor”

Sorry, why do you think people read your journal but to get information.
For you to put someone off the way you did Reilly Burke is about the
most pitiful reply I have ever seen. It makes you seem too lazy to ask Red
Hat about it (what your subscribers expect you to do) and like an ass for
answering in a flippant manner.

WindowsXXX seems to be the most popular distribution, actually, they
must be doing something right, you betcha, they market very well,
however the software they release seems to me and large numbers of
others to be nearly unusable because of stability and frustration caused
by difficulty of use.

The man has a legitimate question about Red Hat, so that leads me to
conclude that you are (as most journals are) only interested in the
advertising revenue.

—Gene Imes, gene@ozob.net

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

A Look to the Future

Phil Hughes

Issue #60, April 1999

My goal was to have Linux Journal address as many of the needs of the
community as possible.

In 1993, before I began publishing Linux Journal, I knew that in order to succeed
the magazine would need the support of the Linux community. At that time,
most of the community existed on the Internet—not surprising, since Linux
development was primarily on the Internet and most developers had met only
over the Internet.

To test the waters, I posted a questionnaire to the comp.os.linux newsgroup on
Usenet. I had two goals: to find out how much interest existed for a print
publication and what information was needed. Interest was high; I received
very positive feedback. My goal was to have Linux Journal address as many of
the needs of the community as possible.

The first need was to help newcomers join the Linux community. Many were
not familiar with Usenet or didn't have access to it. These newcomers needed
an accessible source of information in a convenient format—a print magazine
addressed that market.

Introducing businesses to Linux was another area that had to be addressed.
While our very existence was a help—many people have told us they managed
to get Linux integrated into their business by showing their boss a copy of LJ to
prove Linux was real—we wanted to be more active. We started our “Linux
Means Business” column to show LJ readers where Linux was being used as a
business solution.

The Community Evolves

Today, the Linux community is quite different from what it was five or six years
ago. A strong development community still exists, but the business and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

commercial user community is now a significant portion of the total Linux
community and growing rapidly. Linux is no longer a development project—it is
a real solution for a significant number of enterprises.

The Jay Jacobs retail chain is installing point of sale systems based on Linux in
their 180 stores. The U.S. Postal Service has installed 5000 OCR systems based
on Linux to scan mail. Also, Linux is being used to run elevators in Japan, trains
in Germany and interactive TV in Denmark—even to mediate reality in Canada.

Is there still a community here? Yes. Its members aren't sales clerks in Jay
Jacobs stores or postal workers bagging mail, who most likely don't even know
they are using Linux. They are the people porting software to Linux, IT
managers selecting Linux and those installing Linux. These people need to work
together and learn from the work of others.

To help build this community, Linux Journal has done two things. First, I
volunteered to coordinate a mailing list for Independent Software Vendors
(ISVs) as part of the Linux standardization project. This list is designed to give
ISVs an opportunity to have a united voice in the standardization effort. Second,
we added an IT Solutions supplement to Linux Journal, designed to help IT
professionals see Linux as a possible solution to their needs. The first
supplement appeared with the January, 1999 issue of LJ; the next will appear
with the June issue.

Two Communities?

We are, in fact, building two communities. If this was happening with
proprietary software such as Microsoft products, I would see this as a problem.
In the Linux realm, however, I feel all is well. Let me explain.

The Linux development community benefits from growth in the commercial
use of Linux. This growth also means more hardware and software vendors will
want to support Linux, resulting in more potential employment for Linux
professionals.

On the other end, commercial users of Linux benefit from growth in the
development community. Unlike proprietary software, more developers means
better software without increased cost.

These two communities complement each other. Their levels of interests or
understanding may not all be the same, but one benefits the other; hence,
cooperation is needed between the two.

Linux Journal has plans to aid in that cooperation. Just as we provided a forum
for developers and newcomers in the early stages, we hope to provide a forum
for the development and commercial communities to better understand each
other. We are addressing this goal by doing the following:

• IT Solutions supplements, help for business professionals wanting to
know what Linux can do for them

• Linux Resources (http://www.linuxresources.com/), a starting place for
finding all you want to know about Linux

• Linux Journal Interactive (http://interactive.linuxjournal.com/), containing
serious articles on Linux from both a technical and a business point of
view

• Linux Gazette (http://www.linuxgazette.com/), an open forum for
discussion of technical issues, as well as articles and Linux tips

SSC, the owner of Linux Journal, publishes books and reference cards to help
people use Linux and Linux-related programs. Examples include books on
Samba and the GIMP and a whole series of reference cards to help the more
technical user deal with utility programs included in Linux distributions. In
1999, expect to see new titles to help Linux move to the desktop. More
information can be found at http://www.ssc.com/.

The bottom line is we have been a part of the Linux community since 1993
when SSC first began selling Linux distributions. The Linux community and
Linux Journal have grown up together, and we plan to remain the primary print
resource for Linux as its evolution continues.

Phil Hughes, Publisher

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Ellen Dahl

Issue #60, April 1999

Cyclades-PR4000, PerlDirect, ICS and more.

Cyclades-PR4000

Cyclades Corporation announced a new member of its Power Router family, the
Cyclades-PR4000, a powerful, compact and cost-effective remote access server.
It allows Internet Service Providers and Enterprise Network Managers to
terminate both analog and digital calls and provide network access to remote
offices, telecommuters and home users. The Cyclades-PR4000 is scheduled to
ship in April. Contact Cyclades for pricing.

Contact: Cyclades Corporation, 41934 Christy St., Fremont, CA 94538, Phone:
510-770-9727, Fax: 510-770-0355, URL: http://www.cyclades.com/.

PerlDirect

PerlDirect provides reliability, stability, support and accountability for Perl
through the following features: validated, quality-assured releases of Perl and
its popular extensions; advice and support; Y2K test suite; and a Perl Alert
weekly bulletin. PerlDirect offers an opportunity to provide direct input to a
leading organization involved in open-source development. Basic annual
subscription rates start at $12,000 US.

Contact: ActiveState Tool Corp., PO Box 2870 Main Station, Vancouver, BC V6B
3X4, Canada, E-mail: sales@activestate.com, URL: http://www.activestate.com/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ICS

BASCOM announced the availability of its Internet Communications Server
(ICS), an educational software/hardware solution developed for the OpenLinux
OS from Caldera Systems Inc. for K-12 schools. BASCOM's use of OpenLinux
provides the education vertical market with its first Linux-specific application.
The ICS includes an access management engine, firewall security, proxy cache
and software subscription service. ICS is available through BASCOM as a fully
integrated, drop-in solution, as well as from BASCOM's OEM partner, Caldera
Systems. Pricing for solutions in this line starts at $1,995 US.

Contact: BASCOM Global Internet Services, Inc., Phone: 888-922-2726, E-mail:
info@bascom.com.

Linux Network Server Package

CTiTEK announced a new Linux network server installation. Server package
includes labor (estimated 50 hours) and license costs (full version of Red Hat
5.2); hardware cost not included. Price is $3349.97 US for a 25-user Linux
network server package.

Contact: CTiTEK, 14377 Woodlake Dr., Suite 311, Chesterfield, MO 63017,
Phone: 800-860-9913, 314-878-9855, Fax: 314-878-9893, E-mail:
sales@ctitek.com, URL: http://www.ctitek.com/.

CSM Proxy Plus for Linux Version 4.1

CSM Proxy is a full-featured proxy and caching server, especially written to
handle the various demands of network administrators. It can solve Internet
connection needs in one simple package. Key features and benefits include
SMTP command filtering, IMAP 4 proxy, HTTP cookie filtering, connection limits,
automatic Netscape proxy configuration, remote administration over the Web
and much more. CSM Proxy runs with any web server and does not require a
web server on the same machine. Price is $695 US; version 4.1 update is $100
US. (Users who ordered after April 1, 1998 can upgrade to CSM Proxy 4.1 for
free.)

Contact: CSM-USA, Inc., 360 South Fort Lane, Bldg. 1, Suite B, Layton, UT 84041,
Phone: 801-547-0914, Fax: 801-546-0716, E-mail: sales@csm-usa.com, URL:
http://www.csm-usa.com/.

Empress RDBMS v8.10

Empress announced Empress RDBMS's support for both 32-bit and 64-bit
applications on Hewlett-Packard's HP-UX 11. Running under HP-UX 11, the

Empress RDBMS offers application developers an environment which delivers
high performance, reliability and optimized features for Internet computing.
Empress Hypermedia, an Internet application development toolkit, is used for
the creation of the actual web applications. Empress Suite for Linux includes
Empress RDBMS (bundled with a C programming interface and Empress Report
Writer) with host-level accessibility for enhanced performance tuning. Visit the
web site for pricing or a free 30-day evaluation.

Contact: Empress Software, 6401 Golden Triangle Drive, Greenbelt, MD 20770,
Phone: 301-220-1919, E-mail: info@empress.com, URL: http://
www.empress.com/.

M-Cluster

Alta Technology Corporation announced the availability of M-Cluster, a compact
and fully modular Linux-based clustered computing system for use in high-
performance and complex data processing/analysis applications. The M-Cluster
uses rack-mountable single-board computer and peripheral modules. M-
Clusters are fully integrated with the Linux operating system, which implements
Parallel Virtual Machine (PVM) and Message Passing Interface (MPI) technology.
The Alpha, from Compaq, is currently available in M-Cluster systems with clock
speeds of up to 500MHz. Pentium II processor versions will be available by the
second quarter of 1999. M-Cluster systems are available with prices starting
well under $20,000 US.

Contact: Alta Technology Corporation, 9500 S. 500 West #212, Sandy, UT
84070-6655, Phone: 801-562-1010, Fax: 801-254-4329, E-mail:
sales@altatech.com, URL: http://www.altatech.com/.

LynxArray and LynxNSS

Artecon announced support for the Linux operating system across its
LynxArray and LynxNSS product lines. LynxArray is Artecon's highly scalable,
high-performance RAID product line for corporate data centers, scientific and

technical applications and environments, such as telecommunications
infrastructures or on-the-move operations. LynxNSS is Artecon's network-
attached storage (NAS) product line that supports network file system protocols
for the UNIX/Linux and Windows operating systems for file sharing and storage
over the network. Additionally, LynxNSS uses TCP/IP, the universally accepted
Internet protocol, for network communication as does Linux. Contact Artecon
for pricing.

Contact: Artecon, 6305 El Camino Real, Carlsbad, CA 92009, Phone:
800-872-2783, 760-931-5500, Fax: 760-931-5527, E-mail: sales@artecon.com,
URL: http://www.artecon.com/.

GO-Global, GO-Between, GO-Joe

GraphOn's products are designed around open-system and client-server
concepts for the multi-vendor environment. All provide high-performance
access to UNIX/X and Linux applications anywhere on an organization's
Intranet, the Internet or over dial-up connections. GO-Global 1.5 is a thin-client
PC X server that delivers high-performance access to UNIX applications from
any Windows desktop. It supports Red Hat and Caldera Linux. Evaluation copies
of GO-Global are available from GraphOn's web site. Pricing begins at $295 US
per seat. GO-Between is a thin-client PC X server that provides access from
Microsoft's Windows Terminal Server and other multi-user NT solutions to UNIX
and X Window applications, and supports Red Hat Linux. GO-Joe, a thin-client
Java X server, works on any Java-enabled device or desktop to provide plug-and-
play access to UNIX/X and Linux applications, and supports Red Hat Linux.
Contact GraphOn's sales department for pricing of GO-Joe and GO-Between.

Contact: GraphOn Corporation, 150 Harrison Avenue, Campbell, CA 95008,
Phone: 408-370-4080, Fax: 408-370-5047, E-mail: sales@graphon.com, URL:
http://www.graphon.com/.

Linux Main Memory Database Benchmark

Polyhedra has developed a benchmark demonstrating main memory database
performance on Linux. Features include an active query mechanism that
ensures automatic data change update from a Polyhedra server to its client;
rapid application development and easier change/modification through the use
of object-oriented software techniques; event-driven interfaces to both high-
speed data devices and to other commercial databases and systems;
systemwide SQL access. Visit the web site for information on pricing and
support.

Contact: Polyhedra, Inc., 1611 - 116th Ave. NE, Bellevue, WA 98004, Phone:
425-646-4907, Fax: 425-646-3020, E-mail: sales@polyhedra.com, URL: http://
www.polyhedra.com/.

Magnate Internet Store

ParaSoft announced the launch of their fully scalable, e-commerce solution on
Red Hat Linux. Internet Store is a fully automated, commercially affordable e-
commerce system which can automatically update a retailer's actual inventory
when an on-line sale is made. It provides a virtual shopping cart and quick and
easy pricing, as well as secure credit card transactions. Whenever a retailer
adds new items to his inventory or makes any pricing changes, Internet Store
publishes the new information automatically on the store's web site. When a
customer makes a purchase online, Internet Store instantly notifies the retailer
of the sale. Call for pricing.

Contact: ParaSoft Corporation, 2031 S. Myrtle Ave., Monrovia, CA 91016, Phone:
888-305-0041, Fax: 626-305-3036, E-mail: info@parasoft.com, URL: http://
www.parasoft.com/.

LinuxCare, Inc.

LinuxCare, Inc. provides technical support, consulting, product certification and
education to the business, government and education industries. It offers a
unique web-based service with an easy-to-use search interface to Linux support
resources. The company was co-founded by David Sifry, a contributor to the
Linux kernel and VP of the Bay Area Linux Users Group. LinuxCare is committed
to the concept of open-source software.

Contact: LinuxCare, Inc., 6034 Fulton Street, San Francisco, CA 94121, Phone:
888-546-4878, Fax: 415-831-9763, E-mail: info@linuxcare.com, URL: http://
www.linuxcare.com/.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #60, April 1999

Our experts answer your technical questions.

Accessing /dev/fd0

I successfully installed Red Hat v5.1 with X as the GUI. I have O'Reilly's book
Learning Linux, which is a good reference. The only problem I have is that I
cannot access /dev/fd0. When I type this command in an xterm, a message
states that access to the device is forbidden. What am I supposed to do? I have
looked up information on the Linux USENET listing, but I cannot find anything
specific. —P. Kincaid, pkincaid@osf1.gmu.edu

You either need to be root to access /dev/fd0 or belong to a group (e.g., floppy)
to which users with access permissions to /dev/fd0 belong. On my system, it
looks like this:

 brw-rw-r-- 1 root floppy 2, 0 mai 5 1998 /dev/fd0

—Marc Merlin, marc@merlins.org

The simplest way is to run the following command as root:

chmod 666 /dev/fd0

Bear in mind that this has security implications, especially on a multiuser
system. —Scott Maxwell, s-max@pacbell.net

Hidden config File in X

When I want to start the X Window System, the system shows error messages—
the first few lines look like this:

Could not find config file!
 -Tried:
 /root/XF86Config

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 /etc/XF86Config
 /usr/X11R6/lib/X11/XF86Config.slackware
 /usr/X11R6/lib/X11/XF86Config
 Fatal Server error:
 No config file found! ...

—Fazli Yusof, fazliona_14@hotmail.com

You have not set up X on your system; it is installed, but not configured. A good
way to get started is to run xf86config. This program will step you through
several questions and then set up a simple XF86Config file that should get you
up and running quickly. Once you get X running you can make any other
changes you might need. —Chad Robinson, chadr@brt.com

Upgrading an Old Kernel

I want to upgrade my kernel. The one I am currently using is a few years old.
Can I upgrade all the way to 2.0 or 2.1? One of the things I need in a new kernel
is support for the CMD 640 chip. Right now, Linux can see only one of my hard
drives. I am also looking for something that will play audio CDs from my NEC
260 2X CD-ROM. A few more specifics: I downloaded kernel 2.0.33 (I think). It
has the support for the CMD chip. I can get all the way through make config,
but then I get errors when trying to compile the kernel. It tells me I need gcc
2.6.3 or above. I got 2.7.2 from an FTP site and installed it along with the
current libraries. However, now when I type gcc, it says it cannot execute the
binary file. What's up? —Jim Coonradt, coonmanx@yahoo.com

A lot has changed since your system was brought up. Linux went through three
binary formats (a.out, elf/libc5 and elf/libc6 aka glibc). There is a lot to fix and
upgrade on your system to get a recent kernel to compile and run properly. If
you are interested in doing so, you can look at /usr/src/linux/Documentation/
Changes/ on a recent kernel, and learn about the three binary formats, but be
prepared to do a lot of reading. A much easier alternative is to back up your
user data, and install a brand new Linux distribution. If you are interested in
running 2.1 and the upcoming 2.2 kernels, you should consider installing Red
Hat 5.2, Debian 2.0 or higher, or SuSE 5.3. —Marc Merlin, marc@merlins.org

Wrong Date

The date on my Linux box is not correct. My time is GMT+5. I set the universal
time so it starts by subtracting five hours from it. My current date shows this:

date
Sun Jan 3 05:17:39 GMT+5 1999
date -u
Sun Jan 3 10:17:43 UTC 1999

—Bilal Iqbal, storm@compucraze.net

To set the timezone, you should make the following symbolic link:

ln -s /etc/localtime /usr/share/zoneinfo/US/Pacific

To set the time, you can do it relative to UTC or your local time; it depends on
what time you stored in the BIOS' clock. Read the man pages for hwclock (or
clock if the first doesn't exist) for more information. —Marc Merlin,
marc@merlins.org

When Not to be root

When I use TELNET to log in to my system, I cannot log in as root (I get the login
incorrect message). However, I can log in as myself and use su to become root
using the root password. What's up? —Scott Hall, shall@ccae.org

The file called /etc/securetty defines the terminals a root user may log in to.
Make sure ttyp0, ttyp1 and so forth are defined in that file. Each TELNET
session uses one of these terminals, so define several. If you don't and normal
users are logged in on p0 and p1, you will not be able to log in as root on p2. —
Chad Robinson, chadr@brt.com

TELNET is set up to deny root access as a deliberate security measure. This
keeps a cracker from compromising the root account directly—he has to first
compromise a user account, thereby making it twice as hard to become root on
your Linux box.

Incidentally, the potential cracker's job is made even harder by not indicating
that no password will work for root when logging in remotely. The cracker can't
tell whether his login attempt is failing because he has the wrong password, or
because remote root logins are entirely disabled. —Scott Maxwell, s-
max@pacbell.net

Shells and a.out vs. ELF

I think they are somewhat similar so I'll group my questions:

How can I tell if I have a.out binaries on my system? Any mention of these
suggest them to be an old format. Is there anything still around that I'm likely to
be using that requires a.out support in the kernel?

Also, how can I tell which shell(s) I need on my system? It seems several get
installed, but I'd be happy to stick to just one. Do I need to scan for scripts that
may use something other than the default shell? If so, could someone suggest
an appropriate scan script to demonstrate “The Power” to a newbie, please?

Perhaps the savings are modest for each of these, but so are the resources for
my foray into the Linux world! —Barry Johnson, barryjj@ibm.net

To search for a.out binaries, type:

find / -mode +400 -exec file {}\; | grep MAGIC

The find command looks for files with the executable bit set. file prints what
they are and grep extracts a.out files (identified as either ZMAGIC or NMAGIC or
similar strings. System scripts use only /bin/sh (no csh, zsh or other shell). On
the other hand, some scripts may be written in other languages, and their
interpreter is sometimes called shell. These dependencies, however, are
managed by your packaging system. If you are curious, repeat the find

command line looking for —Alessandro Rubini, alessandro.rubini@prosa.it

On the first question: typing file progname will tell you whether progname is
ELF or a.out.

Listing 1

As for the second, Listing 1 is a short Perl script that prints the shell and file
name of all executable shell scripts on your system. Run it as root. The shells
are printed first so that you can pipe the script's output through sort to sort the
results by shell; this helps you quickly skip past the shells you decide to keep. It
will take some time to run and probably will produce a great deal of output, so
you should redirect the output to a file. —Scott Maxwell, s-max@pacbell.net

Paging or Performance Questions

This is my first Linux system and I'm having trouble tracking down some
information. Maybe you can help me out or point me in the right direction.

1. I have Red Hat 5.2, Netscape 4.5 and cable internet access. My FTP
throughput is excellent, but general browsing on the Internet is almost
unbearable. My 9.6 modem could be faster (well, almost). It's kind of
disappointing, compared to my NT system. Anyway, my first question: I hear
regular disk activity, every five seconds or so. It's like some kind of paging is
going on. What do you think is going on in the background? If I leave the PC
alone for 15-20 seconds, it quiets down.

2. My second question is: while a web page is loading, I can start up top in an
xterm window, move the window around and actually get faster downloads. I
can't explain it. I can be sitting with a partially loaded page for 30 seconds, then
bring up top and it's like Linux woke up and started updating the screen. —
Daryle Dianis, ddianis@home.com

https://secure2.linuxjournal.com/ljarchive/LJ/060/3341l1.html

1. I take it this disk activity isn't linked to a cron job, but indeed to paging. A
good way to make sure is to install and run procmeter; it can show you all kinds
of activity meters, including disk activity and paging.

2. You don't give any details about your hardware, but it sounds like some kind
of hardware and/or driver problem. Make sure you are running the latest
version of X (3.3.3.1), and you don't have any interrupt conflicts. For example,
you may have an interrupt configured for your video card (you don't need one)
that conflicts with the interrupt of your network card. You can also try changing
the interrupt of your network card. —Marc Merlin, marc@merlins.org

This may be a long shot, but do you have power management turned on? If
your hard drive is spinning up and down, it might be producing this type of
problem. Anything that represents more frequent activity (like top) that kept
your drive from spinning down (or your CPU from slowing, etc.) would seem to
speed up your computer.

An interesting thing to try would be to go into your BIOS at boot time and turn
off all of your power management features. If that turns out to be helpful, you
can turn it back on one feature at a time until you isolate the issue. —Chad
Robinson, chadr@brt.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

DECnet Network Protocol

Steve Whitehouse

Patrick Caulfield

Issue #60, April 1999

This article contains information on how to use and configure available DECnet
software as well as information on how the kernel code works.

DECnet was designed by Digital as a way to interconnect their range of
products. In its Phase IV implementation, released in 1983, it can support 63
areas of 1023 nodes each. The specifications for DECnet Phase IV are freely
available (see Resources), which has allowed others to provide DECnet
connectivity in products such as Sun's Sunlink DNI and Linux.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

In networking terms, DECnet is an old standard. Its limited address space is far
less than that of TCP/IP and it does not have the advanced features of more
modern networking standards. DECnet is still widely used in legacy systems,
and the intention of the Linux DECnet project was to allow integration of those
systems with Linux-based solutions.

The Linux DECnet project intends to support only Phase IV DECnet, since
previous versions in current use are very limited in number these days. LAT,
another network protocol designed by Digital, will not be supported because it
is covered by patent protection and its specifications are not freely available. In
this article, we will use the term “DECnet” to mean the DECnet Phase IV family
of protocols.

The DECnet Family of Protocols

DECnet can be carried over a variety of different data link layers. In the
beginning, the Linux kernel DECnet layer will support only the Ethernet link
layer; support will be added later for other link layers such as PPP, DDCMP and
X.25. The PPP link layer is described in RFC1762 and the others are described in
the DECnet documents (see Resources).

Like many network protocols, DECnet can be viewed as consisting of a number
of software layers. More details are included in the section called “A Tour of the
Kernel Sources”.

At the top of the stack is the application layer, which includes all the programs
used on a day-to-day basis. These programs use the system libraries and
system calls to create connections to other nodes. The kernel socket layer
interface and the system libraries encompass what the DECnet standard refers
to as the session control layer. It performs largely the same function as the
library and system calls for TCP/IP. Further down is the network services
protocol (NSP), fairly close to TCP in function. Below these is Routing, which
does more than routing; it is a kind of IP and ARP rolled into one. At the bottom
of the heap is the actual device over which the data is transmitted.

Each machine, called a node in a DECnet network, is identified by an address
consisting of a 6-bit area number and a 10-bit node number. These two
numbers are written separated by a dot, so 1.2 is a computer in area 1 with a
node number of 2. Unlike TCP/IP, the address refers to the computer, not the
interface through which communication is to take place.

Kernel Configuration

Two different sets of patches are available to add DECnet support to the kernel.
The currently available code is based upon a patch written by Eduardo Serrat

for the 2.0.xx version kernels to function as an endnode. In parallel with this,
one of the authors, Steve Whitehouse, was also writing a DECnet layer with an
emphasis on creating a router implementation.

The result is you can now get the original patch for 2.0.xx kernels written by
Eduardo Serrat (a version of the same code ported to the 2.1.xx kernel series)
and also another patch which has modifications by Steve to make use of the
newer support functions in the 2.1.xx kernel series. This last patch will be
distributed as an add-on for the 2.2.xx kernel series and later integrated into
the next development series.

Most of what we say here applies equally to all versions of the kernel patches.
We will point out the differences as we go.

First, you need to retrieve the correct patch for your kernel. In general, the best
way to do this is to get a copy of the most up-to-date kernel in whichever kernel
series you intend to use. You can then download and apply the latest patch to
the kernel source as described below. I also strongly suggest that you study the
release notes for the kernel version you have, since the configuration
procedure may change.

To apply the Linux DECnet patch, unpack the kernel source into /usr/src/linux
as normal. Then obtain the correct patch for this kernel version and
uncompress it in the directory above the top-level Linux source directory, /usr/
src/ in this case. Then type:

$ patch -p0 < patch-file

patch-file is the name of the patch you want to apply. Next you need to compile
a kernel in the usual way, being sure to say Y or N to the question about
including DECnet support. Depending on which version of the patch you have,
some of the options outlined below may be available.

The two main types of DECnet nodes are endnodes and routers; the latter is
subdivided into Level 1 and Level 2 varieties. At the time of writing, only
endnode support is available.

When DECnet router support is available, you will need to enable the option at
compile time. Also, at module load or boot time, you will have to turn it on—a
kernel with router support compiled in will be able to function as both an
endnode and a router.

The DECnet raw sockets option allows the reading and writing of DECnet
packets at a lower level than users normally need. It is very useful for
debugging and monitoring activity, and might be required by future user-level

routing daemons. The main advantage of using this rather than a PF_PACKET

socket is allowing a program to take advantage of the kernels filtering of invalid
DECnet packets.

In order to use the DECnet kernel layer, you must also tell the kernel which
DECnet address to use. This is the only point at which the instructions are
dependent upon the kernel version being used. For 2.0.xx version kernels, you
need the startnet program, which would normally be run in the boot scripts for
your system. For the 2.1.xx version kernels and upward, the DECnet address
can be set either on the command line with an option decnet=1,2 or when the
module is loaded. (That is a comma, not a dot, between the 1 and 2 in the
previous sentence.)

Setting Up Ethernet Cards

Those of you familiar with TCP/IP will recall that the ARP protocol is used to
allow a machine to discover the Ethernet address of other nodes attached to
the network. No equivalent of this protocol exists in DECnet; nodes must have
their Ethernet address set according to their DECnet node address.

In order to work out which Ethernet address to use, you take the four byte
“hiord” prefix specified by the DECnet protocol and concatenate it with two
bytes xx and yy, derived from the DECnet node address of the node you are
configuring.

AA:00:04:00:

xx and yy are the least and most significant bytes of the 16-bit DECnet address,
respectively. The bytes are ordered this way because the original systems upon
which DECnet was implemented had little endian CPUs. Thus, a node with
address 1.1 will have an Ethernet address of AA:00:04:00:01:04 and a node with
address 1.2 will have an Ethernet address of AA:00:04:00:02:04.

This address needs to be set in your Ethernet card before you start the card.
On Red Hat systems, this is easy. You simply add the line

MACADDR=AA:00:04:00:02:04

to the file /etc/sysconfig/network-scripts/ifcfg-eth0 or whichever file
corresponds to the Ethernet card you wish to use. If you are not on a Red Hat
system, you will probably have to look through the startup scripts to find the
ifconfig command for the relevant interface and add the options hw ether AA:

00:04:00:02:04 at a suitable place. If you are using Slackware, then /etc/rc.d/
rc.inet1 is the correct file to modify.

If this seems too complicated, a utility called dn2ethaddr can be used to print
out the Ethernet address of a node given the DECnet address on the command
line. It can also be used within scripts; an example is given in the man page.

The File Utilities

The front end for the DECnet layer that most users will see is the file utilities, a
collection of programs using the kernel socket layer to implement file transfer
and other useful applications. Eduardo Serrat's original kernel patch came with
a few example applications, which have been taken over by Patrick Caulfield
and enhanced during the last few months.

Most of the supplied applications for DECnet use the DAP (Data Access
Protocol) that performs a similar function to the FTP protocol in TCP/IP. DAP is
one of many high-level protocols implemented on top of DECnet; cterm is
another, which provides terminal access in a similar manner to TELNET on TCP/
IP.

Files and File Names

The applications use the OpenVMS transparent DECnet file name format to
refer to files on remote machines. This syntax should be familiar to OpenVMS
users, although it may look a little odd to Linux users.

nodename"

For example:

tramp"patrick mypass"::[docs.html]art.html

The more eagle-eyed will notice that typing this file name into the bash shell
causes it all sorts of problems because the shell has special meanings for
quotation marks and square brackets. To get around this, we have to enclose
the entire file specification in single quotes:

dncopy 'tramp"patrick mypass"::[docs.html]art.html'\
art.html

This command copies the file from the OpenVMS system to our Linux machine.
If you're wary about having passwords visible on the command line, read the
sidebar on DECnet proxies. Although not every DECnet file name you type in
will contain special shell characters, it is a good idea to get into the habit of
using the single quotes so that you don't get unexpected effects if you forget
them when they are needed.

The syntax of file names on an OpenVMS machine is also a bit different from
that in Linux. Directories are enclosed in square brackets and delimited with

dots. File names can have 39 characters on either side of the dot and both are
case-insensitive. OpenVMS displays them in upper case but they can be
referred to in lower case. The Linux file utilities will always convert the file
names to lower case for you, since that is more convenient for Linux users.

OpenVMS treats a file as a collection of records rather than a stream of bytes. It
likes to know how to delimit the records, whether they are fixed or variable
length, and how to display them on the screen (carriage control).

The file utilities available in version 0.10 are:

• dncopy: copies files between OpenVMS and Linux systems.
• dntype: displays the contents of an OpenVMS file on standard output.
• dndir: displays a directory listing.
• dndel: deletes OpenVMS files.
• dntask: execute commands on an OpenVMS system.

dncopy

dncopy is the most complex of all: it uses what may seem to be a bewildering
list of options. A file on Linux is simply a collection of bytes, whereas OpenVMS
has a very rich file system. Files can have different organizations, record
formats and attributes (see “OpenVMS File Types and Attributes”).

dncopy has to cope with the task of making sensible conversions between the
“a file is a file is a file” attitude of Linux and the more sophisticated OpenVMS
system. When copying files from OpenVMS to Linux, OpenVMS makes all the
information about the file available as part of the network protocol, so this
operation rarely requires a user to understand the nature of the remote file.

When copying a file to OpenVMS, the situation is more complex. dncopy has to
tell OpenVMS what type of file it wants to create, what the record format will be
and any other optional attributes that may be required. We have tried to make
the default as useful as possible, so that if you copy a Linux file to OpenVMS,
you get a useful file. OpenVMS has a file type that is analogous to Linux files in
the SEQUENTIAL STREAMLF file. This is a sequential file you can seek with
records delimited by line-feed characters: when you use dncopy to send a file
to OpenVMS, this is what you will normally get. In fact, dncopy goes further
than that and actually looks for records in your file when it sends it in order to
make it meaningful to OpenVMS.

STREAMLF files are fine, but often you want to send block-structured data files
or OpenVMS savesets that have been backed up or downloaded from the
Internet, or perhaps you want your text files to be in the more normal

OpenVMS text file format. This is what all the complicated options in dncopy
are designed to help you with.

A few examples may help illustrate. Normal OpenVMS text files have variable
length records with implied carriage control. To send a file from Linux like this,
we would type:

dncopy -rvar -acr myfile.txt \
 'tramp"patrick mypassword"::'

The option -rvar instructs dncopy to tell OpenVMS that the resulting file is to
have variable-length records. -acr indicates that the records have implied
(carriage-return) carriage control. Also notice the resulting file name has been
left off. dncopy will use the base name of the source file (myfile.txt) in this case.

Alternatively, if you were sending a file to be used in a FORTRAN program,
OpenVMS has a FORTRAN carriage control attribute, where the first byte of
each record says whether to start a new line, new page, etc.

dncopy -rvar -aftn fortfile.txt \
 'tramp"patrick mypassword"::'

If you wanted to send an OpenVMS saveset (a bit like a Linux tar file), you would
send a file with fixed-length records. The normal mode of dncopy is to send
records, since records are what OpenVMS expects. Binary files have no real
record structure so we must tell dncopy to send blocks of bytes and the size of
those blocks. A common size for saveset files is 8192 blocks, so we could send a
saveset file from Linux to OpenVMS with the command:

dncopy -mblock -b8192 saveset.bck\
 'tramp"patrick mypassword"::'

dncopy takes wild-card characters for both Linux and OpenVMS file names.
(OpenVMS wild cards must be used for OpenVMS files: % for a single character
and * for multiple characters.) As a result, you can copy whole directories at a
time. It can also redirect by using standard input and standard output as
destination files, with the hyphen as a file name. In this way, you can embed
OpenVMS files in Linux shell scripts and pipelines.

One “feature” of dncopy you may never need but which grew out of its object-
oriented design is that it will also copy Linux to Linux and OpenVMS to
OpenVMS. Note that if you do an OpenVMS to OpenVMS copy, all the data will
pass through your Linux box on its way.

dntype

dntype is really just a symbolic link to dncopy that forces it to send the file to
standard output; it is really there just to provide consistency and save typing.

dndir

dndir is a directory command (quite like ls in Linux). It displays the OpenVMS
directory in a format similar to the ls command. It takes a few switches to
customise the format, though -l is probably the most used, as it displays most
of the useful information.

Two fields that look different from ls are the file size and protection
information. The file size is shown in 512 byte blocks and the file protection
information is shown in OpenVMS format rather than Linux format. I chose to
leave the protection display this way, because OpenVMS has more file
protection bits than Linux and it is often helpful to be able to see all the
information.

dndel

dndel deletes OpenVMS files. Like dncopy and dndir, it can take an OpenVMS
wild card file name to delete multiple files. With the -i option, you will be
prompted whether you really want a file to be deleted.

dntask

dntask is the only one of these programs that does not use the DAP protocol;
instead, it communicates with an arbitrary DECnet object. One little-used
feature of DECnet on OpenVMS is that by using the syntax TASK=filename, the
command filename.COM will be run as a command procedure (the OpenVMS
equivalent of a shell script) and the output can be redirected back to the calling
task. Three example tasks are provided with the distribution. One simply issues
a SHOW SYSTEM command which sends its output to the Linux machine (using
the command dntask tramp::show_system). The output from this is analogous
to the Linux ps command. Another sends the -i (interactive) flag to dntask to
allow the user to interact with a shell on the OpenVMS machine. However, the
following example is the main reason dntask exists.

Eduardo Serrat, who wrote the kernel layer for DECnet, made sure it was
compatible with X11R6. This means that if you have DECnet support compiled
into your X server (see http://linux.dreamtime.org/decnet/Xservers.html for
pre-built X servers with DECnet support), you can start X Window System
applications on an OpenVMS machine and have them display on a Linux
machine. This is a cheap and efficient way to provide X terminal support for
OpenVMS systems. The dntask program can issue a command to start any X

program to display on the Linux machine, provided you write a suitable remote
command procedure. The example below shows a DECterm being started
(something I personally use quite a lot), but it could also be used for more
sophisticated things, such as starting a complete CDE session when a user logs
in to Linux and starts X.

dntask 'tramp::decterm'

Other Utilities

Eduardo also provides the following useful DECnet utilities:

• sethost provides terminal access to OpenVMS machines, similar to
TELNET.

• ctermd is a daemon that provides the opposite service, allowing OpenVMS
users to SET HOST (or TELNET if you prefer) to a Linux machine.

• dnmirror and dnping are test utilities for checking that the software is
installed correctly and verifying connections to particular OpenVMS
nodes.

All the above utilities and the X servers depend on libdnet which is available
from our web site (see Resources).

A Tour of the Kernel Sources

For the kernel hackers, here is a quick spin around the relevant source files.
This section applies only to the newer kernel patches (i.e., for the 2.1.xx series
and up), as those are the ones we expect you'll find most interesting and useful.

Figure 1. DECnet Software Layer Diagram

A diagram showing the overall layout of the Linux DECnet layer is shown in
Figure 1. Where we describe the DECnet protocol, we go into just enough detail
to give an idea of the main features of each part of the kernel code. If you want
to know more about the way the kernel code works, you will need to read a
copy of the DECnet specifications (see Resources) and then look at the source
directly.

The main source file is af_decnet.c. This file contains the socket layer interface
and parts of the DECnet NSP and session control layer code. Since the DECnet
layering model does not map exactly onto the socket code, session control is
provided partly by the kernel and partly by a user space library called
libdnet.so.

dn_raw.c contains the code which implements the raw socket layer. It was one
of the first things written, since it is very useful when debugging to see what is
going on “under the hood”. It is also a good example of how to write the
simplest socket layer interface possible. The file is compiled only when the raw
sockets option is configured.

Figure 2. State Diagram of the NSP Layer

The rest of the NSP layer is divided into two parts: one for dealing with
outbound packets, dn_nsp_out.c, and one for incoming packets, dn_nsp_in.c.
The state table for the NSP layer is shown in Figure 2. We won't say much about
the diagram here, but it should be a useful aid when used in conjunction with
the kernel code.

The Routing layer is rather problematical. It has been divided into several files,
due to the fact that the Routing layer actually does much more than just
routing. dn_route.c is the main file which deals with incoming and outgoing
packets, and dn_dev.c provides support for device-specific functions.

dn_neigh.c has a split personality. When a node is running as an endnode, it
provides the On-Ethernet Cache described in the DECnet specifications; for
routers, it provides the adjacency database. Since they are so similar, the
decision was made to merge the two functions in order to keep the code small.

The actual routing functions (compiled only when the node is configured as a
router) are in dn_fib.c. The code in this file is very experimental at this time, as
decisions are still being made regarding how much of the routing should be
done in user space and how much in kernel space.

Main Kernel Code Paths

One of the more obscure and important parts of the code is the main path for
outgoing data packets. The DECnet layer uses the protocol-independent
destination cache written by Alexey Kuznetsov, and neighbor table code written
by Alexey Kuznetsov and Pedro Roque. These were originally designed to do
some common processing required by the IPv4 and IPv6 network protocols,
with the intention that other protocols would begin to use them at a later date.

What exactly do these two bits of code do? We will start by describing the
neighbor table. The idea behind this is simply to keep a list of known nodes
which are directly connected, along with certain information used by the
protocol in question to communicate with them. In the case of TCP/IP, this
means the ARP subsystem; for DECnet, it is used to hold one of two things. For
endnodes, it holds the list of known nodes on the directly connected networks
with which communication can be established, known as the On-Ethernet
Cache. For routing nodes, it holds what the specifications describe as the
adjacency database. In both cases, the function is the same but the actual
method of operation is slightly different.

In the endnode case, hello messages are sent by routers every ten seconds to
all endnodes that are directly connected. They are used by the endnode to
create entries in the On-Ethernet Cache. Should a hello message not be
received for a certain length of time, normally one minute, the entry is removed
from the list. A default router is a directly connected node to which packets
should be sent if the endnode is not connected directly to the destination. The
default router is determined by information in the received hello messages.

For routing nodes, hello messages are received from both endnodes and other
routers and are used to update the adjacency table. In this case, the entries are

removed if no hello messages are received for a length of time—a specified
multiple of a time length noted in the hello messages. Currently, the neighbor
table does not support different timeouts for each different neighbor. This
problem is being worked on and may be solved by the time you read this.

One other piece of information held in the neighbor table is the format of
header to be used by the routing layer in transmitting NSP data. There are two
formats, one for use over broadcast links (long format) including Ethernet, and
one for use over point-to-point links (short format). This is done by setting a
pointer to a function to the correct routine dn_long_outout or dn_short_output

when the table entry is created.

The destination cache is based on principles similar to the neighbor table.
However, the object is to hold information required for each destination. When
a packet is to be sent to a certain destination, it is looked up in the destination
cache to see if it exists. If so, then that entry is used; if not, a routing algorithm
must be called to discover the correct destination.

The routing algorithm also depends upon the routing or non-routing type of
the node. The algorithm for routers has not been properly implemented yet,
but will reside in the file dn_fib.c when that time comes. For endnodes, the
algorithm is simply to send directly to any node in the On-Ethernet Cache, to
send to the default router if it is not in the cache, or to send directly if there is
no default router.

Again, a function pointer is available in each destination entry for a routine that
will add destination-specific information to outgoing packets, then call the
output routine of the neighbor.

That about wraps up the main features of the kernel code. There is, of course, a
lot more to it than what is mentioned here, but we hope our overview will be
useful if you're planning to add features or help with debugging. If you have
specific questions, we'd be happy to try to answer them; however, please read
the documentation first and also remember that we may not always be able to
send an answer right away.

The Future

Hopefully, we have given you a good overview of the Linux/DECnet connectivity
available at the time of writing. However, we are still hard at work on new
features and programs (see below), some of which may be ready by the time
this is printed.

dapfs is a file system layer for Linux which will let you mount an OpenVMS file
system onto your Linux machine.

fal is a file listener for Linux, which will allow users on OpenVMS machines to
access files on network Linux machines without having to log in.

Router support is also being worked upon. This is expected to take the form of
a small amount of kernel code and a user-level daemon. It will allow you to
connect multiple DECnet networks to your Linux machine.

DECnet Proxies

OpenVMS File Types and Attributes

Resources

Acknowledgements

Steve Whitehouse is a research student at the University of Cambridge,
England. His research topic is “Error Resilient Image Compression”, and he is
sponsored by Racal Radio Ltd. In his spare time, he contributes code and bug
fixes to the Linux kernel network code and DECnet. Please feel free to e-mail
him about Linux DECnet or his research topic at SteveW@ACM.org.

Patrick Caulfield is a software developer for the Santa Cruz Operation in Leeds,
England. As most of his previous jobs involved at least 100 VAXs, he misses
them a little and so got involved with the DECnet project. He lives in Leeds with
Helen and six mad cats (who also have their own home pages) and can be
reached by e-mail at patrick@pandh.demon.co.uk.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3129s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3129s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3129s3.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3129s4.html
mailto:SteveW@ACM.org
mailto:patrick@pandh.demon.co.uk
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Xxl Spreadsheet Project

Vincent Granet

Issue #60, April 1999

This paper is a general presentation of the Xxl project and of its latest version,
describing the choices that drove the design of Xxl and its main charactertistics.

During the time frame of my academic work, I must periodically deliver
statements of student grades to the administrative offices. The number of
grades I manage is not immense, about two thousand per year, but it is enough
to warrant automating the computations with the help of a spreadsheet
program. My daily computer environment is Linux and until 1996, I was
regretting the lack of a public domain graphical spreadsheet program for the X
Window System, one which was user friendly and simple to use.

Of course, spreadsheets have been available in the UNIX world for many years,
but in my opinion, none of them met the criteria of freeness, simplicity and
user-friendliness I desired. I was forced to use a commercial spreadsheet on
another computer with a different operating system in another office. This
situation was not convenient, so I decided to build my own spreadsheet. At the
same time, there was a call for proposals of computer projects in the Computer
Science Master's program. This was a good opportunity to launch the project
and I submitted this idea. It was chosen by a team of four students, thus, Xxl

history began.

A Short History of Spreadsheets

The origin of spreadsheets is in the world of accounting. This name refers to
paper sheets used for computing cost differences between offer and demand,
and more generally, between two prices. These computations were made by
hand and were tedious and error-prone. The first theoretical work on computer
versions occurred in the early 1960s. The main principles of using matrices,
cells and budget simulation, as highlighted by these theoretical works, were
implemented in FORTRAN programs for simulating enterprise budgets (see
Resources).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

However, it was not until 1978 that two MIT students, D. Bricklin and B.
Frankston, designed a computer spreadsheet, VisiCalc, that was truly usable on
a personal computer. VisiCalc allowed many small enterprises to use costly
computer techniques previously affordable only to larger companies. This
program contributed significantly to the success of personal computers,
especially the Apple II, for which the first version was written. VisiCalc was a
tremendous success, but unfortunately for its authors, a very short one. At the
beginning of the 1980s, VisiCalc encountered difficulties in trying to deal with
the rise of IBM PCs. It was replaced by a new spreadsheet based on VisiCalc,
Lotus 1-2-3 by M. Kapor. New features of Lotus 1-2-3, such as a simpler
denotation for cells, the concepts of cell row or macro and the addition of
graphic handling quickly made it a market success and a de facto standard.

In the late 80s, after Macintosh opened the door, most operating systems
began to provide graphical user interfaces. The spreadsheets Quattro Pro and
Excel appeared at that time and made sheet handling simpler, thanks to the
use of tear-off menus, buttons and dialog boxes. Today, Excel is one of the
most widely used commercial spreadsheets.

For many years, the UNIX world did not seem to be interested in spreadsheets.
The first free and open spreadsheets available were sc and ss (an sc variant).
They more or less offer all the basic functionality expected from a spreadsheet,
but have no graphical interface. In the early 90s, Xspread (based on sc) and
Oleo from the GNU project were the first spreadsheets with an X interface.
Both provide new features (Xspread can generate graphics), but their graphical
interface is still awkward and lacks user friendliness (none of them offers tear-
off menus or provides for the X-style cut and paste).

Today, thanks to the qualities of its kernel and applications, the success of
Linux is such that this system is beginning to overshadow some great builders
of commercial operating systems. Linux is beginning to enter the industrial
world—this is one of the reasons for the present burgeoning development of
office suites (StarOffice, Koffice, Applixware, Gnome project's Gnumeric) which
aim to equaling their commercial rivals.

Xxl has been designed for ease of use with a user friendly interface. It does not
try to compete with spreadsheets such as Excel or Lotus 1-2-3, but will handle
small and medium-size sheets.

Design

Most often, due to lack of time or competence, the programming projects of
the Master's degree in Computer Science of the University of Nice—Sophia
Antipolis are either not completed, or the final result cannot be used in
practice. Expecting a usable result should not be a priority, since the goal of the

project is mainly pedagogic. For this particular case, I wanted to get a usable
preliminary version of the spreadsheet, even though I anticipated some parts
of the software product would need revision, as was the case. Thus, the goal of
the project was clearly defined and the spreadsheet was limited to the basic
functions of any classic spreadsheet, with a flexible and user friendly interface.
The project was divided into two different parts, as little connected as possible.
Two students dealt with the spreadsheet kernel and two others worked on the
graphical interface.

Since the spreadsheet functionality was limited from the beginning, it had to be
written to allow for subsequent extensions; therefore, choosing the
programming language was of utmost importance. I wanted a language that
would facilitate writing a spreadsheet prototype and enable an incremental
development method. It also needed to be easy to alternate quickly between
test cycles and corrections. Moreover, it should integrate an easy-to-use
graphical library to free the programmer from all cumbersome aspects of X
programming.

I chose STk, developed by E. Gallesio, which is an implementation of the
programming language Scheme together with the Tk graphical toolkit (see
Resources). In fact, it is similar to the Tcl/Tk system, with the Tcl interpreter
replaced by a Scheme interpreter. More specifically, STk provides all the power
and ease of use of the Tk toolkit from within the Scheme world. Moreover, Lisp
(Scheme is a Lisp dialect) has already demonstrated its qualities for software
extension (e.g., GNU Emacs). Finally, STk offers an object layer, STklos, which
provides for a posteriori reutilization and extensions.

Tk (and thus STk) does not provide in its distribution any specialized widget for
representing the computing sheet of a spreadsheet program and its predefined
components do not make such a widget easy to build. The students could not
devote more than half a day per week to the project. Asking them to program
such a widget was out of the question—the project would have been an
immediate failure. Thus, it was necessary to reuse some already-built
components in order to make the programming task as small as possible.

One of the strengths of Linux is that it offers its users an open world.
Thousands of programmers around the world are designing and developing
programs, often of superior quality, which they offer for free to the
international community. One of these programmers, J. Hobbs, is the present
maintainer of a Tk widget called tkTable. Not only does this widget specialize in
the representation of computing sheets, but it also had a property that made it
the ideal interface between my two teams of programming students, i.e., the
spreadsheet kernel and its graphical interface. The tkTable widget provides for
associating a data structure (representing the cell values) with the graphic

computing sheet. After any change in content of the computing sheet, the
widget automatically updates the data structure. In addition, and even more
importantly, after any change in the data structure, the widget updates the
computing sheet. Thanks to this property, the two student teams could work
fully independent of each other.

The second component we re-used was the LaTeX environment, available on
any UNIX platform. Xxl uses LaTeX for printing computing sheets and
previewing them on the screen.

In June 1996 at the project's end, the students delivered the first usable version
and we decided to distribute it freely. To give access to the source text of a
software product is to accept the judgment of those who will scrutinize it. I used
part of my vacation time to revise the code before the first distribution, which
occurred in September.

The next year, to my disappointment, no student team chose to pursue the
development of Xxl. Its present state was satisfactory for my own needs and I
had no time to devote to its further development. Then I received mail from a
new web site aimed at promoting scientific applications for Linux (SAL). They
offered to give me a page for Xxl. This site gave the spreadsheet a larger
audience, which encouraged me to improve it. Once more, I spent part of my
summer vacation modifying the Xxl code, which I signed with a mock name.
This time I rewrote almost all the code, with considerable simplifications,
thanks to the use of the Flex and Bison parser generators. I also corrected
some errors and offered new functionality. In September 1997, a new version
was delivered.

At the beginning of June 1998, E. Gallesio delivered a new version of STk, with a
small error which prevented the spreadsheet from working correctly. Since I
was not using this version, I did not have a problem, but I got many messages
asking me to correct it from users who thought the error came from Xxl. I had
not been aware that Xxl had so many users. I devoted part of July to the
distribution of a working version.

While it is clear that in an open environment like Linux, re-using already built
software components is a good thing and should be encouraged, this does
come with problems. In particular, programmers who use external components
which they do not fully master (even with the source code at their disposal) are
very dependent on the evolution of these components. Software tools like Flex,
Bison or LaTeX, which have been stable for many years, did not cause any
problem. This was not the case for the tkTable widget or for STk, which is still
under development and constantly changing.

With each new version of tkTable, it is necessary to adapt it to STk. This
represents about a hundred changes in the source code of the widget.
Obviously, Xxl must follow the evolution of the tkTable widget, since the
improvements are a benefit to it.

The evolution of STk could also be a source of problems. Fortunately, the
author of this language is a friend whose office is not far from mine. This made
it possible to solve many problems. While Xxl certainly benefitted from the
improvements to STk, STk also benefitted from Xxl. In fact, the sheer size of the
spreadsheet makes it a good test program, exposing some errors in the
interpreter.

Characteristics of Xxl

Xxl has most of the characteristics of a classic graphical spreadsheet program.
It handles computing sheets containing information stored in cells. Each sheet
is edged with scrollbars. The number of sheets is not limited except by the size
of the physical memory.

Computing sheets are structured in rows and columns. Rows are denoted by
numbers and columns by letters. A cell is the intersection between a row and a
column and is denoted, as in Lotus 1-2-3, by a column number and a row
number (e.g., A1, AB23, ZZA2345). A cell range is denoted with the first and last
cell, separated by a colon (e.g. A1:A3, A1:C1, A1:B8). Note that the last example
denotes a rectangle. Users can interactively and without limits increase the
number of rows and columns of a sheet. Every sheet is headed with a typing
area for entering the value of the current cell. Figure 1 shows an example of an
Xxl spreadsheet.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3186f1.large.jpg

Figure 1. An Xxl Spreadsheet

The information stored in cells is made up of data (character strings, numeric
values or booleans) or formulas which enable the computing of data. Integer
arithmetic is of infinite precision. Formulas are mathematical expressions
preceded by an equal sign. They involve arithmetic and classical relation
operators, as well as a set of predefined functions. The functions deal with
arithmetic (sum, prod, max, etc.), statistics (avg), logic (if, not, when), time (date,
time) or character string handling (concat, len). Notice that all visible cell values
are automatically computed anew.

Formulas can also contain internal or external references to cells in two modes:
absolute or relative. A dollar sign in front of a row or column name denotes an
absolute reference (e.g., $B2, D$13, A1). Absolute references do not change
in move operations (addition or suppression of rows or columns, cut-and-paste
operations). Without a dollar sign, the reference is a relative one (e.g., B2, D13,
A1). It can be changed by a move operation. The cell C3 of Figure 1 contains the
formula =A3-B3, which represents the difference between the values of the A3
and B3 cells.

The preceding references are internal ones, since they refer to cells in the same
computing sheet. By contrast, external references refer to cells in other
computing sheets and must be preceded by the name of the specified
computing sheet. This name is that of the UNIX file containing the computing
sheet.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3186f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3186f1.large.jpg

Xxl offers several modes for displaying the cells. First, the size can be modified
by enlarging or shrinking rows or columns. Second, Xxl offers several
conventional modes for displaying the cell contents: several fonts in various
sizes, bolding and slanting; several justification modes (left, right, centered),
texts on several lines; several number representations (fixed, scientific,
financial, percentage) or currencies (franc, dollar, euro).

One of the aims of Xxl is to provide a simple usage model by means of a
graphical interface. All features of the spreadsheet can be accessed through a
control panel, consisting of a bar with buttons, menus and a message area, all
controllable by the mouse (see Figure 2). The control panel acts on the current
sheet, which can be selected by the “sheets” menu or by a button in the upper
left part of each sheet.

Figure 2. The control panel

The main functions to which the control panel provides access are the
following:

• Selecting the current sheet: when several computing sheets are open at
the same time, all commands of the control panel apply to the current
sheet.

• Opening, closing and saving computing sheets: the storage format is the
STk code that describes the computing sheet. Thus, loading a sheet is
simply interpreting the program that describes it.

• Printing and previewing the computing sheets: these functions use LaTeX.
• Creating series: this function enables creation of a sequence of integer or

textual values, with any step size.
• Cutting and pasting rows or columns
• Sorting rows or columns: this can be done by increasing or decreasing key

values.
• Writing computing sheets in several formats: LaTeX, text, csv, HTML.

The mouse is also used for two important functions: selecting references and
cut-and-paste operations. Entering cell references in a formula can be done
automatically by selecting the needed cells with the mouse. This is especially

https://secure2.linuxjournal.com/ljarchive/LJ/060/3186f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3186f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3186f2.large.jpg

useful for references to rows or to external references, where keyboard input is
error-prone. Copying and pasting cells within a computing sheet or between
two different sheets is done according to two modes: whether one wants to
copy (or move) values with or without formulas. Xxl also allows cutting and
pasting from a computing sheet to another X application and vice versa.

Finally, Xxl offers on-line help with dialog boxes and balloon contextual help on
the buttons of the control panel. On-line help, however, is somewhat scarce,
but it can be considered sufficient if the spreadsheet usage is intuitive enough.

Perspectives

We have just considered the main characteristics of Xxl. One could ask which
features are missing to make it a first-class spreadsheet. Xxl was designed to be
simple and it will remain so. I do not think, for example, that it is necessary to
be able to handle dozens of fonts or page layouts.

New features to be implemented in the near future are the following:

• Exporting to other formats for representing computing sheets (SYLK, WKS,
...) and importing files in these formats. It is very important, in my
opinion, to ensure compatibility with other spreadsheets.

• Extending the set of functions for the formulas. Presently, the
spreadsheet offers only thirty predefined functions. Search functions
(hlookup, vlookup) are missing, as well as financial computations.

• Generating graphics. Histograms and pie charts are important tools for
aiding quick and global understanding of a computing sheet.

• Internationalization. A Russian user noted that he was unable to sort
character strings written in his mother tongue. In the last version of STk, E.
Gallesio integrated some comparison mechanisms for character strings
that use localization. Thus, internationalizing the spreadsheet will be done
very soon.

• Integrating a mechanism to allow users to add their own extensions.

Long-term development will deal with making the production of computing
sheets more reliable. Writing a spreadsheet is an error-prone activity. A very
interesting study by R. Panko (see Resources) shows that a significant error rate
exists in the production of computing sheets of various sizes, even when done
by experienced developers. He also demonstrates the frequent lack of
validation methods for building computing sheets and the scarce use of a
posteriori checking tools. It is also surprising to learn that many companies use
simple spreadsheets for developing large accounting applications instead of
using more reliable software products that are better suited to handling a large
amount of data.

A computing sheet is a set of values linked by references, which constitute a
sort of graph. The formula denotations of most spreadsheets, based on cells
which refer to other cells, provide very low-level semantics for describing the
spreadsheet structure. Mutatis mutandis (the necessary changes having been
made), this is similar to the programming languages of the early 60s, with the
goto statement used as the main means for structuring code. This analogy with
programming languages is not fortuitous. Building a computing sheet is similar
to building a program. For at least three decades, work in the programming
world has been done in order to offer numerous tools and methods for
building programs that are structured, reliable, extensible, etc. Apparently, such
work has not yet been done in the area of spreadsheets or at least has had no
visible effect in most software products.

Thus, the aim of Xxl is to provide a new spreadsheet model. In particular, it will
result in the development of a unique language that will permit it to integrate
mechanisms for cell typing, assertion definition and global descriptions directly
within the spreadsheet. Cell typing will validate input or cut-and-paste values.
Assertion mechanisms will prove the validity of the global spreadsheet
description.

Documentation of spreadsheets is an important aspect; however, spreadsheet
developers generally consider it superfluous. Actually, documentation tools are
almost nonexistent in Xxl. Time must be taken to propose a mechanism to
simplify and automate the documentation of cells and spreadsheets.

Programming is a complex activity requiring knowledge and savoir faire.
Spreadsheets are very popular software products, used generally by non-
specialists. For most of them, the use of a high-level programming language
would be a true difficulty. It is necessary to provide them with a graphical,
interactive interface, simple and user friendly, in order to describe the
semantics of spreadsheets without having to use a programming language.

Conclusion

Xxl is an academic project developed by students at the University of Nice—
Sophia Antipolis. It was born in 1996 to fill the need in the UNIX world for a user
friendly, easy-to-use and public-domain graphical spreadsheet program. UNIX
has a long tradition of open source software. In the early 80s, R. Stallman and
his FSF paved the way. Today, it goes on in different ways with Linux and the
Internet. During its development, Xxl took advantage of various free software
products. In turn, its authors are happy to offer it free to the international
community.

The latest version of Xxl provides a truly functional spreadsheet for small or
mid-size needs. The model it defines is similar to that of all present-day

spreadsheets. However, this model is limited and needs to be entirely revised.
Xxl is a stable experimental platform for future student projects to propose and
define tools for a new spreadsheet generation.

Resources

Vincent Granet (vg@unice.fr) received his Ph.D. from the University of Nice—
Sophia Antipolis in 1988. After lecturing in the University of Provence and in the
University of Nancy I, he came back to the University of Nice—Sophia Antipolis
in 1995 as an assistant professor in Computer Science. He is also a research
staff member in the I3S laboratory (Computer science and signal processing) of
the University of Nice—Sophia Antipolis, where he works in the “Languages”
team.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3186s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Network Programming with Perl

James Lee

Issue #60, April 1999

Using Perl to make network task is easy—here's how.

Perl has been called the glue that holds the Internet together because it is an
extremely powerful text processing and CGI programming language. Although
Perl was designed in the beginning to be a text manipulation language, it has
evolved into a potent multi-purpose programming language. One area in which
Perl has shown its power is that of network programming.

Perl makes network programming easy by providing built-in functions that can
be used to create low-level client/server programs from scratch. Also, many
modules are freely available that make programming common networking
tasks simple and quick. These tasks include pinging remote machines, TELNET
and FTP sessions. This article presents examples of each of these types of
network programs.

Introduction

Client/server network programming requires a server running on one machine
to serve one or more clients running on either the same machine or different
machines. These different machines can be located anywhere on the network.

To create a server, simply perform the following steps using the built-in Perl
function indicated:

• Create a socket with socket.
• Bind the socket to a port address with bind.
• Listen to the socket at the port address with listen.
• Accept client connections with accept.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Establishing a client is even easier:

• Create a socket with socket.
• Connect (the socket) to the remote machine with connect.

Several other required functions and variables are defined in the Socket.pm

module. This module is probably already installed on your machine, but if not,
it is available at the Comprehensive Perl Archive Network (CPAN), the official
Perl source code repository (see Resources). To use this module in our
programs, the following statement is required at the top of the program:

use Socket;

This statement will locate the file Socket.pm and import all of its exported
functions and variables.

Viewing Module Documentation

All examples in this article use modules that are available at no cost from CPAN.

Perl modules are usually self-documenting. If the author of the module follows
the generally accepted rules of creating a Perl module, they will add Plain Old
Documentation (POD) to the module's .pm file. One way to view the POD for
the Socket module (assuming Perl and Socket.pm were installed correctly) is to
execute the following at the shell:

perldoc Socket

This command displays Socket.pm's POD converted to a man page. The output
is a relatively thorough discussion of the functions and variables defined in this
module.

Another way to view the documentation is to convert the POD to text using:

pod2text \
/usr/lib/perl5/i686-linux/5.00404/Socket.pm | more

The program pod2text is included in the Perl distribution, as are the programs
pod2html, pod2man, pod2usage and pod2latex.

A Simple Server

Listing 1.

Our first programming example is a simple server running on one machine that
can service only one client program at a time connecting from the same or a

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l1.html

different machine. Recall that the steps for creating a server were to create a
socket, bind it to a port, listen at the port and accept client connections.

Listing 1, server1.pl, is the source code for this simple server. First, it is
generally a good idea to compile using Perl's strict rules:

use strict;

This requires all variables to be declared with the my function before they are
used. Using my may be inconvenient, but it can catch many common
syntactically correct yet logically incorrect programming bugs.

The variable $port is assigned the first command-line argument or port 7890 as
the default. When choosing a port for your server, pick one that is unused on
your machine. Note that the only way to ensure you select a port that does not
have a predefined use is to look at the appropriate RFC (see Resources).

Next, the socket is created using the socket function. A socket is like a file
handle—it can be read from, written to or both. The function setsockopt is
called to ensure that the port will be immediately reusable.

The sockaddr_in function obtains a port on the server. The argument
INADDR_ANY chooses one of the server's virtual IP addresses. You could
instead decide to bind only one of the virtual IP addresses by replacing
INADDR_ANY with

inet_aton("192.168.1.1")

or

gethostbyname("server.onsight.com")

The bind function binds the socket to the port, i.e., plugs the socket into that
port. Then, the listen function causes the server to begin listening at the port.
The second argument to the listen function is the maximum queue length or
the maximum number of pending client connections. The value SOMAXCONN is
the maximum queue length for the machine being used.

Once the server begins listening at the port, it can accept client connections
using the accept function. When the client is accepted, a new socket is created
named CLIENT which can be used like a file handle. Reading from the socket
reads the client's output and printing to the socket sends data to the client.

To read from a file handle or socket in Perl, wrap it in angle brackets (<FH>). To
write to it, use the print function:

print SOCKET;

The return value of the accept function is the Internet address of the client in a
packed format. The function sockaddr_in takes that format and returns the
client's port number and the client's numeric Internet address in a packed
format. The packed numeric Internet address can be converted to a text string
representing the numeric IP using inet_ntoa (numeric to ASCII). To convert the
packed numeric address to a host name, the function gethostbyaddr is used.

Let's assume all of the servers referred to in this article are started on the
machine named server.onsight.com. To start the server on this machine,
execute:

[james@server networking]$ server1.pl
SERVER started on port 7890

The server is now listening at port 7890 on server.onsight.com, waiting for
clients to connect.

A Simple Client

Listing 2.

Listing 2, client1.pl, shows a simple client. The first command-line argument to
this program is the host name to which it should connect, which defaults to
server.onsight.com. The second command-line argument is the port number
which defaults to 7890.

The host name and the port number are used to generate the port address
using inet_aton (ASCII to numeric) and sockaddr_in. A socket is then created
using socket and the client connects the socket to the port address using
connect.

The while loop then reads the data the server sends to the client until the end-
of-file is reached, printing this input to STDOUT. Then the socket is closed.

Let's assume all of the clients are started on the the machine named
client.avue.com, although they could be executed from any machine on the
network. To execute the client, type:

[james@client networking]$ client1.pl server.onsight.com
Hello from the server: Tue Oct 27 09:48:40 1998

The following is the standard output from the server:

got a connection from: client.avue.com [192.168.1.2]

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l2.html

Perl Makes Life Easy

Creating sockets using the functions described above is good when you want to
control how the socket is created, the protocol to be used, etc. But using the
functions above is too hard; I prefer the easy way—IO::Socket.

The module IO::Socket provides an easy way to create sockets which can then
be used like file handles. If you don't have it installed on your machine, it can be
found on CPAN. To see this module's POD, type:

perldoc IO::Socket

A Simple Server Using IO::Socket

Listing 3.

Listing 3, serverIO.pl, is a simple server using IO::Socket. A new IO::Socket::INET

object is created using the new method. Note that the arguments to the
method include the host name, port number, protocol, queue length and an
option indicating we want this port to be immediately reusable. The new
method returns a socket that is assigned to $sock. This socket can be used like
a file handle—we can either read the client output from it, or write to it by
sending data to the client.

A client connection is accepted using the accept method. Note the accept
method returns the client socket when evaluated in scalar context:

$new_sock = $sock->accept()

and returns the client's socket and the client's IP address when evaluated in list
context:

($new_sock, $client_addr) = $sock->accept()

The client address is computed and printed the same as in Listing 1, server1.pl.
Then the socket associated with that client is read until end-of-file. The data
read is printed to STDOUT. This example illustrates that the server can read
from a client using < > around the socket variable.

A Simple Client Using IO::Socket

Listing 4.

Listing 4, clientIO.pl, is a simple client using IO::Socket. This time, a new object is
created that connects to a host at a port using the TCP protocol. Ten strings are
then printed to that server, then the socket is closed.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l3.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l4.html

If the server in Listing 3, serverIO.pl, is executed and then the client Listing 4,
clientIO.pl, connects, the output would be:

[james@server networking]$ serverIO.pl

got a connection from: client.avue.com [192.168.1.2]
hello, world: 1
hello, world: 2
hello, world: 3
hello, world: 4
hello, world: 5
hello, world: 6
hello, world: 7
hello, world: 8
hello, world: 9
hello, world: 10

Bidirectional Communication

It is possible to create servers and clients that communicate with one another
in both directions. For instance, the client may send information to the server,
then the server may send information back to the client. Therefore, network
programs can be written so that the server and client follow some
predetermined protocol.

Listing 5.

Listing 5, server2way.pl, shows how a simple server can be created to read a
command from a client, then print out an appropriate response to the client.
The module Sys::Hostname provides a function named hostname that returns
the host name of the server. To insure output is seen as we print, IO buffering
is turned off for the STDOUT file handle using the autoflush function. Then a
while loop is executed that accepts connections. When a client connects, the
server reads a line from the client, chopping off the newline character. Then a
switch statement is executed. (The switch is cleverly disguised as a foreach

loop, which happens to be one of my favorite ways of writing a switch.)
Depending on the input entered by the client, the server outputs an
appropriate response. All lines from the client are read until end-of-file.

Listing 6.

Listing 6, client2way.pl, shows the companion client. A connection to the server
is made, then the client prints a few commands to the server reads the
response and prints the response to STDOUT.

The following is the output of the client code in Listing 6:

[james@client networking]$ client2way.pl
server.onsight.com
Hi
server.onsight.com

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l5.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l6.html

Tue Oct 27 15:36:19 1998
DEFAULT

A Forking Client

If you want to write a client that accepts commands from STDIN and sends
them to the server, the easiest solution is to write a client that forks a child. (A
solution can be written using select that does not fork, but it is more
complicated.) The client's parent process will read the commands from the user
through STDIN and print them to the server. The client's child process will then
read from the server and print the responses to STDOUT.

Listing 7.

Listing 7, clientfork.pl, is an example of a client that forks.

To fork in Perl, call the cleverly named fork function. It returns undef if the fork
fails. If it succeeds, it returns 0 to the child, non-zero (the child's pid) to the
parent. In clientfork.pl, an if statement checks the value of $kid, the return
value from the fork. If $kid is true (non-zero, the child's pid), parent executes
reading from STDIN printing to the server. If $kid is false (zero), the child
executes reading from the server printing to STDOUT.

The following is the example session executing the client code in Listing 7,
clientfork.pl connecting to the code in Listing 5, server2way.pl:

[james@client networking]$ clientfork.pl
server.onsight.com
NAME
server.onsight.com
DATE
Tue Oct 27 15:42:58 1998
HELP
DEFAULT
HELLO
Hi

When the parent process is finished reading from STDIN, it executes the kill

function to kill the child process. It is very important the parent reap its child so
that the child does not outlive the parent and become a zombie.

A Forking Server

Listing 8.

Servers usually don't handle only one client at a time. One approach to a server
that can handle more than one client is a server that forks a child process to
handle each client connection. Listing 8, serverfork.pl, is an example of a
forking server.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l7.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l8.html

One way for the parent process to reap its children is to define a subroutine
and assign a reference to that subroutine to $SIG{CHLD}. (The hash %SIG is
Perl's way of handling signals.) In this example, a subroutine named REAP is
defined and a reference to this subroutine is assigned to $SIG{CHLD}. When the
parent receives the CHLD (child terminated) signal, the REAP subroutine will be
invoked.

Within the while loop that accepts all the client connections, the server forks. If
the fork returns true, the parent is running and it executes the next statement
which immediately transfers control to the continue block, performs the
housecleaning step of closing the child socket and waits for the next client to
connect. If the fork returns undef, then the fork failed, so the server dies. If the
fork returns neither true nor undef, then the child is running, so the parent
socket is closed and the child reads from the client and processes the client.
When the child is finished processing the client, the child exits and is reaped by
the parent.

Thread Programming in Perl5.005

Perl version 5.005 supports thread programming. This means a threaded
networking program can be created to be either a server or a client.

Listings 9, 10, and 11 are three different versions of a client that logs into
several web servers and determines the type of server being used (Apache,
Netscape, etc).

Listing 9.

Listing 9, getservertype1.pl, shows a non-forking, non-threaded client. First, an
array of hosts is created and initialized to a few web sites. The subroutine doit

is defined to receive the web server name as an argument, open a client
connection to that server at port 80 (the HTTP port), send the HTTP request and
read each line of response. When the line starting Server: is read, it will extract
the server name and store it in $1. Then the host name and web server name
are printed. This subroutine is called for each host in the array of hosts.

Here is the output of getservertype1.pl:

processing www.ssc.com...
www.ssc.com: Stronghold/2.2 Apache/1.2.5 PHP/FI-2.0b12
processing www.linuxjournal.com...
www.linuxjournal.com: Stronghold/2.2 Apache/1.2.5 PHP/FI-2.0b12
processing www.perl.com...
www.perl.com: Apache/1.2.6 mod_perl/1.11
processing www.perl.org...
www.perl.org: Apache/1.2.5
processing www.nytimes.com...
www.nytimes.com: Netscape-Enterprise/2.01
processing www.onsight.com...
www.onsight.com: Netscape-Communications/1.12

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l9.html

processing www.avue.com...
www.avue.com: Netscape-Communications/1.12

Note that the hosts are processed in the same order as stored in @hosts.

Listing 10.

Listing 10, getservertype2.pl, is a forking version of getservertype1.pl. The
forking occurs within the foreach loop. The fork is executed and if it returns
true, the parent then executes the next statement to the next host name. If the
fork returns undef, then the program dies. Otherwise, the child calls the doit
function passing in the host, then exits. After the parent completes its work in
the while loop, it waits for all child processes to finish, then exits.

Here is the output of getservertype2.pl:

processing www.ssc.com...
processing www.linuxjournal.com...
processing www.perl.com...
processing www.perl.org...
processing www.nytimes.com...
processing www.onsight.com...
processing www.avue.com...
www.onsight.com: Netscape-Communications/1.12
www.nytimes.com: Netscape-Enterprise/2.01
www.avue.com: Netscape-Communications/1.12
www.linuxjournal.com: Stronghold/2.2 Apache/1.2.5 PHP/FI-2.0b12
www.perl.com: Apache/1.2.6 mod_perl/1.11
www.ssc.com: Stronghold/2.2 Apache/1.2.5 PHP/FI-2.0b12
www.perl.org: Apache/1.2.5
Parent exiting...

Note that the hosts are not printed in the order stored in @hosts. They are
printed in the order processed, the slower hosts taking longer than the faster
ones.

Listing 11.

Listing 11, getservertype3.pl, is a threaded version. In the loop through the host
names, a new Thread object is created. When creating the Thread, the new
method is passed a reference to a subroutine that the thread will execute, as
well as the arguments passed into that subroutine. The thread then executes
its subroutine and when the subroutine returns, the thread is destroyed. Here
is the output of getservertype3.pl:

processing www.ssc.com...
processing www.linuxjournal.com...
processing www.perl.com...
processing www.perl.org...
processing www.nytimes.com...
processing www.onsight.com...
processing www.avue.com...
www.nytimes.com: Netscape-Enterprise/2.01
www.onsight.com: Netscape-Communications/1.12
www.avue.com: Netscape-Communications/1.12
www.linuxjournal.com: Stronghold/2.2 Apache/1.2.5 PHP/FI-2.0b12
www.perl.com: Apache/1.2.6 mod_perl/1.11

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l10.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l11.html

www.ssc.com: Stronghold/2.2 Apache/1.2.5 PHP/FI-2.0b12
www.perl.org: Apache/1.2.5

Net::Ping Module

Listing 12.

The Net::Ping module makes pinging hosts easy. Listing 12, ping.pl, is a
program similar to a program on my server that pings my ISP to keep my
connection alive. First, a new Net::Ping object is created. The protocol chosen is
tcp (the choices are tcp, udp and icmp; the default is udp). The second
argument is the timeout (two seconds). Then an infinite loop is executed,
pinging the desired host. The ping() method returns true if the host responds,
false otherwise, and an appropriate message is printed. Then the program
sleeps ten seconds and pings again.

An example output of Listing 12, ping.pl, is:

Success: Wed Nov 4 14:47:58 1998
Success: Wed Nov 4 14:48:08 1998
Success: Wed Nov 4 14:48:18 1998
Success: Wed Nov 4 14:48:28 1998
Success: Wed Nov 4 14:48:38 1998
Success: Wed Nov 4 14:48:48 1998

Net::Telnet Module

Listing 13.

The Net::Telnet module makes automating TELNET sessions easy. Listing 13,
telnet.pl, is an example of connecting to a machine, sending a few system
commands and printing the result.

First, a server and a user name are used. The user name defaults to the user
running the script by assigning to $user the value $ENV{USER}. (The hash %ENV

contains all of the environment variables the script inherits from the shell.)

Next, the password is requested, then read in. Note that turning off the stty
echoing is done through a system call. It can also be done using the
Term::ReadKey module.

Then, a Net::Telnet object is created. To log in to the server using this object,
the login method is called. Several system commands are executed using the
cmd method which returns the STDOUT of the system command which is then
printed. Note that part of that output is the system prompt, which is printed
along with the output of the command.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l12.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l13.html

Also note that the code $tn->cmd('/usr/bin/who') is evaluated in list context and
stored in @who, which is an array that contains all the lines of ouptut of that
command, one line of output per array element.

After all of the system commands are executed, the TELNET session is closed.

Here is an example output of Listing 13, telnet.pl:

Enter password:

Hostname: server.onsight.com
[james@server james]
Here's who:
james tty1 Oct 24 21:07
james ttyp1 Oct 27 20:59 (:0.0)
james ttyp2 Oct 24 21:11 (:0.0)
james ttyp6 Oct 28 07:16 (:0.0)
james ttyp8 Oct 28 19:02 (:0.0)
[james@server james]
What is your command: date
Thu Oct 29 14:39:57 EST 1998
[james@server james]

Net::FTP Module

Listing 14.

The Net::FTP module makes automating FTP sessions easy. Listing 14, ftp.pl, is
an example of connecting and getting a file.

A Net::FTP object is created, the login is called to log in to the machine, the cwd

changes the working directory and the get method gets the file. Then the
session is terminated with quit.

There are methods to do many common FTP operations: put, binary, rename,
delete, etc. To see a list of all the available methods, type:

perldoc Net::FTP

Here is an example output of Listing 14, ftp.pl:

[james@k2 networking]$ ftp.pl server.onsight.com
Enter your password:
Before
--
/bin/ls: *.gz: No such file or directory
--
After
--
perl5.005_51.tar.gz
--

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l14.html

Archive a Web Site

Using both Net::Telnet and Net::FTP, a very simple script can be created that
can archive a directory structure on a remote machine.

Listing 15.

Listing 15, taritup.pl, is a Perl program that is similar to a program I use that
logs in to my ISP and archives my web site.

The steps this program follows are:

• Start a session on the remote machine with TELNET.
• Go to the web page directory using cd.
• Archive the directory using tar.
• Start an FTP session to the remote machine.
• Change to the directory containing the tar file.
• Get the tar file.
• Quit the FTP session.
• Back in the TELNET session, delete the tar file on the remote machine.
• Close the TELNET session.

This program outputs text to let the user know how the script is progressing.

Summary

Perl is a powerful, easy-to-use programming language. That power and ease of
use includes network programming due to many built-in functions and
modules. Best of all, it's free.

Resources

James Lee is the president and founder of Onsight (http://www.onsight.com/).
When he is not teaching Perl classes or writing Perl code on his Linux machine,
he likes to spend time with his kids, root for the Northwestern Wildcats (it was a
long season), and daydream about his next climbing trip. He also likes to
receive e-mail at james@onsight.com.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3237l15.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/3237s1.html

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux in Enterprise Network Management

Leo Lahteenmaki

Issue #60, April 1999

Providing network information to customers on an Intranet saves both time
and money for this international chemical company.

Kemira is a chemical company which employs approximately 10,000 people
and has plants in Europe, the U.S. and Asia. Kemira got into IP-networking early
by building KemNet, an IP-based Intranet out of Cisco routers, in 1989.

Mission-critical information systems, such as process automation computers,
are located on-site in many of Kemira's plants. IT professionals run and manage
these systems and they rely on KemNet to do their job efficiently. These IT
professionals are the primary internal customers for my unit, and we support
them by determining answers to the following questions:

• How is the network performing?
• Do they have too little or too much network capacity?
• Is the telecommunications operator delivering as promised?
• Is a particular problem network-related or not?
• If KemNet is the cause of the problem, how will we avoid it in the future?

The challenge for our department is to provide our IT professionals with
enough information so they can handle most network management tasks on-
site. This allows us to keep our organization small (currently two employees
each working half-time) and costs down.

Since the people using network management services are located on three
continents, we decided to use e-mail and web technology to create a “self-
service network management center” in Kemira's Intranet.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linux Network Management Tools

Many methods can be used to extract information from an IP router network.
One nice feature of Cisco routers is their ability to log all types of network
incidents using a syslogd daemon. These syslog messages can then be further
processed with Perl scripts to create web pages or send e-mail messages.
These messages are a great help in finding problems in routers and links or
even in measuring usage of dial-in links.

Another popular method of getting network information is by using SNMP
(Simple Network Management Protocol), the standard for managing IP
networks. Many open-source tools for gathering and processing SNMP data are
available. One tool we found useful and easy to set up is MRTG (Multi Router
Traffic Grapher), which gathers traffic load information from router interfaces.
(See Figure 1.)

Figure 1. MRTG Screenshot

A third tool for getting performance information is good old ping. By
periodically measuring ping round-trip times, you can find the times when your

https://secure2.linuxjournal.com/ljarchive/LJ/060/3256f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3256f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/060/3256f1.large.jpg

network is most congested. Then, by checking the actual traffic volume using
mrtg, you can see if the telecom operator is delivering what he has promised.

Most international data communication lines are delivered using frame-relay
technology. Frame-relay services are priced using a committed information rate
(CIR) for all conditions and access speeds. Measuring sometimes gives
interesting results and may save your company money in the next frame-relay
agreement.

With a 100MHz Pentium Linux server, a couple of Perl scripts, Apache and a few
open-source tools, we turned these three network information sources into an
automated, web-based, network information center. Our customers can now
troubleshoot those problems they believe to be KemNet-related much faster,
saving working hours and downtime.

Another application for Linux is work-flow automation. Our trouble-ticket
volume is so small that it did not justify buying a full-blown trouble-ticket
system. Instead, we use Hypernews, a web-based news group collaboration
tool.

Linux in the Corporate World

Maintainability is always a question when using open-source products. For us,
the question is easy because our network management services would not
exist without open-source tools. We tried to deliver “self-service network
management” using a well-known and expensive commercial product. We soon
found that even keeping this tool running required frequent visits from a
vendor's consultant with a fee of over $1000/day. Using it to make the network
information available on the Web would have been extremely expensive to set
up and maintain.

All our self-built software consists of short (a maximum of 20 lines) Perl scripts
run from cron or CGI. Anyone with minimal Perl experience will be able to
maintain these scripts. We don't use compiled languages and keep our scripts
as simple as possible to ease maintenance.

Security is another issue that needs constant attention. In security audits, I have
noticed consultants give extra attention to each Linux box found in the
corporate Intranet. Fast-developing Linux software may introduce new security
problems, and the powerful features of Linux give both the cracker and the
administrator the potential to generate security holes.

Summary

Our customers feel they can do their job better now that they can access real-
time network information with their browser. A telephone call to a human
operator sitting in front of his expensive network management workstation
cannot give them this service. We also feel that open-source tools and in-house
scripts can be easily maintained and secured for a corporate environment.

We are expanding our use of the Linux platform into new applications such as
directory services, log file management and network traffic analysis.

Tools for Linux-Based Network Management

Leo Lahteenmaki (leo.lahteenmaki@kemira.com) started playing with Linux
when the first IP-stack became available. When not working, Leo likes to ski,
play tennis or fish.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/060/3256s1.html
mailto:leo.lahteenmaki@kemira.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Alphabet Soup: The Internationalization of Linux, Part 2

Stephen Turnbull

Issue #60, April 1999

Mr. Turnbull takes a look at the problems faced with different character sets
and the need for standardization.

A large body of standards has evolved to handle the problems with text
manipulation I presented last month. In general, ad hoc handling methods are
considered to be localization, while a method that conforms to some standard
and is generalizable to many cultural environments is considered
internationalization.

POSIX

Currently, the central standard for internationalization is the locale model of
POSIX. Unfortunately, in the current state of the art, localization via the POSIX
model is something of a Procrustean bed. For example, in Japanese there are
two common ways of notating the currency unit yen: postfixing ¥ and prefixing
¥. It is not uncommon for both conventions to be used in the same
document in different contexts: the former is common in running text, the
latter in tables. POSIX does not provide for this. It is easy enough to implement
by creating a Japanese-table locale to complement the Japanese-text locale, but
this places the burden of setting the correct locale on the application
programmer. Although much smaller in scale, this burden is much like that
imposed by multilingualization. Nor was POSIX designed to support such fine
discrimination; this is better left to the individual application anyway.

POSIX-style internationalization provides a comfortable, functional
environment for almost all users and applications. Specifically, a POSIX locale
determines:

• the character set and encoding to be used
• classification of characters (e.g., alpha, hex-digit, whitespace, etc.)
• the sorting order for strings in the language

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• digit separator and decimal-point conventions
• date and time presentation
• currency presentation

• message format (in particular, strings for yes and no)

All of these features are implemented by changing the functionality of standard
library functions or by adding new ones. That is, the isalpha function in libc no
longer consults a fixed table, but instead the table is varied according to the
current locale. Displaying monetary values can be done by using the new
function strfmon. Unfortunately, the locale support in Linux libc is still only
partially documented as of libc-2.0.7t; no man page for strfmon exists, although
there is an entry point in the library. A useful discussion by Ulrich Drepper, one
of the authors of GNU libc, may be found at http://i44s11.info.uni-karlsruhe.de/
~drepper/conf96/paper.html.

POSIX Internationalization Levels

The POSIX standard defines a number of levels of compliance with
internationalization standards. These levels are a somewhat useful guide to
how far an internationalization effort has progressed. Level 1 compliance is
achieved when a system is 8-bit clean. Obviously this is a bare minimum, since
some characters may get corrupted. Level 2 compliance is achieved when a
flexible system for producing localized time, date and monetary formats is
implemented. As described above, these facilities are provided by GNU libc, so
disciplined use of appropriate formatting functions and the setlocale call is
going to be sufficient for most applications to achieve Level 2 compliance. Level
3 compliance is achieved when the application can use localized message
catalogs. This facility is provided by the GNU gettext library. Controlling gettext
is nearly as simple as setting the locale. Unfortunately, the rules of precedence
are somewhat different. However, disciplined use of gettext and its supporting
functions will make localization much easier. (See “Internationalizing Messages
in Linux Programs” by Pancrazio de Mauro, March 1999.)

Level 4 refers to Asian language support. The Asian languages are given a
special status because of the variety of complex subsystems needed to support
them. For example, many implementations of X have two separate families of
string display functions, one for strings encoded in one byte and another for
strings composed of characters encoded in two bytes. In Japanese, one- and
two-byte characters are mixed freely, so an internationalized application which
needs to deal with Japanese would have to analyze strings into one-byte and
two-byte substrings on the fly. In fact, dealing with Japanese by itself forces the
programmer to deal with many of the problems posed by true multilingual
applications.

Character Sets

It would be nice if we could think of character sets as corresponding directly to
the scripts we use to write by hand, but unfortunately things are not so simple.
For example, there are nearly 200 countries in the world, each with its own
currency. Of course, many share the same symbol, but it is clear that if your
keyboard had a key for every currency symbol, it would be about twice as big as
the one you use today. Other useful symbols are the paragraph and sectioning
marks used by lawyers and the various operators and non-Latin symbols used
by mathematicians. Since new characters are being created all the time (for
example, the symbol for the new European monetary unit, the euro), it is
impossible to include them all. So in fact, a character set is someone's idea of a
useful set of characters.

Representation as bit strings inside a computer imposes further constraints.
Since modern computers all work in terms of bytes as the smallest efficient unit
of access, there is a big difference in the space and processing requirements for
text based on a 256-character set, which can be encoded in a single byte, and a
257-character set, which cannot. One might think that the extension to two
bytes, or 65536 characters, would be enough to satisfy anyone, but it turns out
that even this is not enough. The process of selecting about 20,000 ideographic
characters of Chinese origin occasioned many arguments while the Unicode
character set was being designed. Even those 20,000 may not be enough; while
there are only a few people in the world who care about some of the excluded
ideographic characters, to them it may be the most important character in the
world, as it is the one they use to write their name.

The result is that many character sets have been designed and populated, and
standards have been written to codify their use.

ASCII

The most influential standard of all is the American Standard Code for
Information Interchange, abbreviated ASCII. This is a list of the 128 7-bit bit
strings, with an assignment of each one to either a character commonly used in
American English or a control function. Many of the control functions are not
used today, but so much software has been written on the assumption that hex
values 0x00 to 0x1F are not printing characters that no one considers assigning
a few more characters to some of those code points.

Because nearly all existing computer languages are compatible with the ASCII
character set, ASCII in some form is a subset of most electronic character sets.
However, there are many variants. For example, the JIS Roman character set
used in most Japanese computers is almost identical to ASCII, except that a
couple of the glyphs are changed and the Japanese yen symbol is substituted

for the backslash. In order to codify this development, ASCII-like character sets
are defined by the International Standards Organization (ISO) in standard ISO
646. U.S. ASCII is designated the international reference version for ISO 646 and
is occasionally referred to as ISO 646-IRV (for example, in naming fonts for the X
Window System).

The ISO 8859 Family of Character Sets

ASCII is simply not sufficient for use in an internationalized environment. For
example, most European languages use accented characters. Certainly, it is
possible to represent “Latin small letter a with acute accent” (á) as a two
character ligature (e.g., 'a), but this is inconvenient for sorting and possibly
ambiguous. Furthermore, it is not obvious how to represent the caron using
only ASCII characters. In order to maintain compatibility with ASCII for the sake
of existing software, and accommodate many of the countries most intensively
using computers, the ISO 8859 standard was designed. ISO 8859 had three
main goals: maintain ASCII compatibility, implement within the constraints of
ISO 2022 and provide the broadest coverage of languages within a single-octet
encoding. Unfortunately, these three goals are not compatible. Several
important scripts which can be encoded in a single octet require several dozen
code points each for their characters because they do not overlap with ASCII or
each other: Greek, Russian, Hebrew and Arabic.

The solution arrived at was not to define a single character set, but rather a
family of character sets. Each ISO 8859 character set contains ASCII (ISO-646-
IRV) as a subset, and the encoding is defined so that, interpreted as integers (C
chars), the ASCII characters are encoded identically in ASCII and ISO 8859. Then
a list of supplementary character sets, each including at most 96 characters to
conform to ISO 2022 (described below), was defined. These supplementary
characters are then assigned to the code points 0xA0 to 0xFF. Where the
supplementary set is derived from an alphabet, the natural collating order is
followed, but for the collections of accented characters the order is necessarily
arbitrary. The current supplementary character sets are listed in Table 1.

Table 1.

Unicode and the ISO-10646 Universal Character Sets

The next step is to unify all of the various character sets. Of course, the national
standards have two main advantages. They are space-efficient, encoding the
characters needed for daily use and computer programming in one byte, and
they are time-efficient, since they can be arranged in the natural collating order.
The second advantage has already been conceded by the majority of European
languages when using encodings in the ISO 8859 family. Indeed, ISO 8859-1 has
been an enormous success since it effectively unifies all the major Western

https://secure2.linuxjournal.com/ljarchive/LJ/060/3327t1.html

European and American languages in a single multilingual encoding. With
system library support for sorting (the LC_COLLATE portion of POSIX locales), it
is hard to justify using anything else where it will serve.

In this context, it was natural to try to extend the success of ISO 8859 by
abandoning the efficiency of one-byte encodings in favor of a single
comprehensive encoding for all characters used by all the world's languages.
Two complementary efforts, proceeding in parallel, were conducted by a
commercial consortium and the ISO. Unsurprisingly, the ISO's working group
called its effort by the ponderous name Universal Multiple-Octet Coded
Character Set (abbreviated UCS), while the commercial consortium adopted the
sprightly “Unicode”. Also unsurprisingly, the Unicode Consortium (driven by the
commercial advantages of a uniform two-byte encoding) was able to formulate
a standard unifying nearly all of the world's scripts in a single two-byte
encoding by 1991, as well as codifying a dictionary of properties of each
character guiding such usages as ligatures and bidirectional text, while the ISO
ended up defining both a two-byte version and a four-byte (31-bit) version of
the UCS in 1993 without the additional properties. Also in 1993, the Unicode
and UCS-2 character sets and encodings were unified, although each standard
retains unique features.

Why separate efforts? Surely 65336 different characters are enough for anyone.
Who needs two billion characters?

The reason for separate efforts is easy enough to explain. The Unicode effort
was driven by the commercial advantages of a single encoding. Much effort has
been expended in the standardization of Internet protocols, first working
around the problems caused by “8-bit-dirty” Internet software, then in adding
support for Asian languages, and finally in creating protocols for negotiating
character sets. It would be nice if all that effort and the necessary
implementation inefficiencies could be avoided by having one standard
encoding. As we will see, it is not that easy, but standardizing on Unicode could
result in large cost savings, both in development and processor time and
protocol overhead.

On the other hand, the ISO group was primarily concerned that a truly
universal framework be created so as to avoid the need for yet another
“universal” standardization effort in the future. It worried more about generality
and eschewed standardizing poorly-understood areas, such as treatment of
bidirectional text. In fact, UCS-4 currently contains only those characters
defined by the Unicode standard, adopted en masse as the Basic Multilingual
Plane of UCS-4 and equivalent to UCS-2.

The reason for their concern is it is already painfully obvious 65536 characters
are not enough for some purposes. Although over 18,000 unassigned code
positions remain in Unicode, classical scholars of hieroglyphics or Chinese
could rapidly fill these positions with ideographs. The current set of “unified
Han” (Chinese ideographs used in Chinese, Japanese, Korean and Vietnamese)
was reduced to 20,902 only through a highly contentious unification process,
suggesting that some of the controversial characters might be reassigned to
code points. Archaic Hangul (composed Korean syllables) would add thousands
more. Unicode also explicitly excludes standardized graphic notations such as
those used in music, dance and electronics. It is clear that a truly universal
character set will easily exceed the limit of 65536 imposed by a two-octet
encoding.

Why does ISO 10646 specify a 31-bit encoding? Current hardware is byte-
oriented, but there is no particular reason to stop at 24 bits, since only certain
video hardware can efficiently use three-byte words of memory. The word size
most efficiently accessed by most current hardware is four bytes. With
potentially billions of characters, it was considered wise to reserve a bit in each
character for arbitrary internal processing purposes; however, this bit must be
cleared before passing the character on to an entity expecting a UCS character.

Similarly, large contiguous private spaces have been reserved containing 1/8 of
the three-octet codes, i.e., those with the high octet 0, and 1/4 of the four-octet
codes. This means that an application can embed entire national standard
character sets in this space in a natural way (in particular, preserving their
orderings) if desired, without any possibility of conflict with the standard,
current or any future extensions. ISO 10646 does not necessarily recommend
such techniques, but certainly permits them. This still leaves over 1.5 billion
code points reserved for future standardization; it seems certain most will
remain reserved but unused for a good long time.

However, it seems unlikely that Unicode, let alone UCS-4, will soon have the
success enjoyed by ISO 8859-1. First, the Oriental languages' digital character
set standards are not yet satisfactory, in part because the languages are not
fully standardized. Standardization efforts for all the Han character languages
remain active. If the Japanese, for example, have not yet settled on a national
character set, how can they be satisfied with the unified Han characters of
Unicode? A recent tract entitled Japanese is in Danger! claims that Unicode will
be the death of the Japanese language, and many computer-literate Japanese
show varying degrees of sympathy with its arguments.

Second, in multilingual texts it may be desirable to search for some specifically
Chinese character (as opposed to its Korean or Japanese cognates). In Unicode,
this requires maintaining substantial amounts of surrounding context which

would contain markup tags indicating language and would be impossible by
definition in Unicode-encoded plain text. Although you could point to similar
difficulties with ISO 8859-1 text, it is not the same. A Chinese character is a
semantic unit with specific meaning, unlike an alphabetic character. In fact, the
Han unification process normally ignores semantics. Thus, it confounds a
Japanese character with the same shape as a given Chinese character, but a
different meaning. ISO 8859-1 characters, on the other hand, are rarely
searched for in isolation; if so, they have no semantic content.

Third, Asians are simply not yet as multilingual across the Asian languages as
Europeans are across European ones, although this is changing rapidly. Still, it
is unlikely that we will ever see an “Asian Switzerland” with Chinese, Japanese
and Vietnamese simultaneously in use as official languages. Thus, the
advantage of Unicode over national standards is not so great.

Fourth, from the Western European point of view, most of the gains to a single
character set supporting multilingual processing have already been achieved by
ISO 8859-1. Western Europeans have little need for Unicode.

In the near future, Unicode will be most useful to computer and operating
system vendors, including Linux. By supporting Unicode as the basic internal
code set, an unambiguous way is provided to avoid linguistic confusion. Adding
new languages will simply be a matter of providing fonts, a Unicode-to-font-
encoding mapping table and translating the messages. No additional
programming effort will be necessary, and backwards compatibility is
guaranteed. This is not trivial. An example is given below of a kernel patch used
to make directory listings of Japanese Windows file systems mounted with
either the MS-DOS or VFAT file systems readable. This kernel patch is certainly
never going to be integrated into the kernel source code, because it is
impossible to ensure it won't mess up non-Japanese names.

National Standard and Private Character Sets

Besides the national standard character sets mentioned above, many others
are still in common use. A few of the more important ones include Russian's
KOI-8 (alternative to ISO 8859-5), ISCII for Indian languages written in the
Devanagari script and VISCII for Vietnamese. Of course, U.S. ASCII is available.

Other important character sets are those defined by industry or individual
firms. An important characteristic of these private character sets is that their
encodings often do not conform to the ISO 2022 standard, making interchange
among systems difficult. Microsoft is at the forefront, defining and registering
myriads of Windows character sets. Most of these are ASCII derivatives and
closely related to ISO 8859 encodings, so although the small differences are
annoying to programmers, they are often insignificant to users. However, in the

field of Asian languages the non-ISO-2022-compliant encodings called Shift JIS,
an encoding for Japanese used by Microsoft and Apple operating systems, and
Big 5, an encoding for traditional Chinese defined by a consortium of five large
Taiwanese manufacturers, are important. In both cases, portions of the code
space not used by international standard character sets were employed.

In the case of Shift JIS, the idea was to include the so-called half-width katakana,
the 70 or so characters necessary to phonetically transcribe the Japanese
language. Rarely used in normal text, they are somewhat convenient for file
names in the DOS 8.3 format. This requires that they be encoded as a single
octet. The Japanese standard JIS X 0201 encodes ASCII in its usual code points
and places the katakana in the octets with values 0xA1 to 0xDF. Shift JIS is
based on this standard and uses a simple algorithm to transform standard JIS
kanji codes into two-octet codes with the first octet in the ranges 0x81 to 0x9F
and 0xE0 to 0xEF, which are unused by JIS X 0201.

Character Set Extension: ISO 2022

Unicode and UCS-4 solve the problem of character representation
permanently. However, as seen above, Unicode is not quite sufficient for all
purposes and UCS-4 is much too wasteful for general use. Furthermore, an
enormous amount of hardware and software is oriented toward one-octet
character sets. Thus, the ISO 2022:1994 standard for code extension
techniques (in particular, using several character sets in one data stream), the
most recent edition of a standard first published as ECMA-35 by the European
Computer Manufacturer's Association in 1971, remains relevant.

ISO 2022 is a rather abstract standard. A brief outline of its provisions follows.

• Division of codes into 7-bit and 8-bit types; the 256 code points in the 8-bit
table are divided into the left (L, 0x00 to 0x7F) and right (R, 0x80 to 0xFF)
halves. 7-bit codes are considered to use only the left half.

• Further division of the 128 points in each half into control (C, 0x00 to 0x1F)
and graphic (G, 0x20 to 0x7F) codes.

• Codes 0x1B (escape), 0x20 (space) and 0x7F (delete) in CL and GL are
fixed. Codes 0xA0 and 0xFF in GR are often left unused.

• Provisions are made for handling control characters similar to those for
graphic characters described below, but these are uninteresting in a
discussion of internationalization.

• Graphic character sets must be encoded in a fixed number of bytes per
character. Either all bytes of all characters are in the range 0x20 to 0x7F,
or all bytes of all characters are in the range 0xA0 to 0xFF. A character set
in which the bytes 0x20 and 0x7F or 0xA0 and 0xFF are never used is

referred to as a 94n-character set, where n is the number of bytes.
Otherwise, the character set is a 96n-character set.

• An encoding may use up to four character sets simultaneously, denoted
G0, G1, G2 and G3. G0 must be a 94n-character set; the other three may
be 96n-character sets. The interpretation of a byte depends on the shift
state. Any of G0, G1, G2 or G3 may be invoked into GL by the locking shift
control codes LS0, LS1, LS2 and LS3 respectively. When the character set
G0 is shifted into GL, then G0 is used to interpret bytes in the range 0x20
to 0x7F. Similarly, in 8-bit encodings, right locking shifts are used to invoke
character sets G1, G2 or G3 into GR by the control codes LS1R, LS2R and
LS3R. Then that character set is used to interpret bytes in the range 0xA0
to 0xFF.

• A single character may be invoked from the G2 and G3 sets by use of the
single shift control codes SS2 and SS3.

• Escape sequences are provided for the purpose of designating new
character sets into the G0, G1, G2 and G3 elements.

A given version of ISO 2022 need not provide all of the above shifting and
designating facilities. ASCII, for example, provides none. To the extent that they
are provided by a derivative standard, the control codes must take the values
as shown in Table 2.

Table 2.

Three examples of codes which may be considered applications of the ISO 2022
standard are ASCII, ISO 8859-1 and EUC-JP. ASCII is the standard encoding for
American English. It is a 7-bit code with the ASCII control codes designated to
C0, the ASCII graphic characters designated to G0, and C1, G1, G2 and G3 not
used. C0 is invoked in CL; G0 is invoked in GL. No shift functions are used.

ISO 8859-1 is an 8-bit code, with C0 left unspecified (but normally C0 has the
ASCII control characters in it), the ASCII graphic characters are designated to G0
and the Latin-1 character set is designated to G1. C1, G2 and G3 are unused. C0
is invoked in CL and G0 is invoked in GL. No shift functions are used.

Packed-format EUC-JP is an 8-bit code, with C0 unspecified but normally using
the ASCII control characters; the JIS X 0201 Roman version of ISO 646
designated to G0; the main Japanese character set JIS X 0208 containing several
alphabets, punctuation, the Japanese kana syllabaries, some dingbats and
about 6000 of the most common kanji (ideographs) designated to G1; the half-
width katakana from JIS X 0201 designated to G2; and the JIS X 0212 set of
about 8000 less common kanji designated to G3. C0 is invoked in CL, G0 is
invoked in GL and G1 is invoked in GR. No locking shift functions are used. Half-

https://secure2.linuxjournal.com/ljarchive/LJ/060/3327t2.html

width katakana and the JIS X 0212 kanji must be accessed using the single shifts
SS2 and SS3 respectively, and they are shifted into GR.

Finally, ISO 2022 is commonly used in Internet mail and multilingual
documents. The 7-bit version is used and every character set must be
designated to G0 before use.

The single most important aspect of ISO 2022 is that code points in the range of
ASCII control characters may not be used for graphic characters. This means
that text files using encodings conforming to ISO 2022 will behave like text (with
line breaks and not causing strange behaviour in your terminal or emulator)
when displayed. If you do not have the fonts or your software does not
understand the designation escape sequences, you will see gibberish, but at
least your terminal will continue working.

A second useful fact is that in most cases ASCII or some version of ISO 646 is
designated to G0. An encoding like EUC-JP with ASCII designated to G0 and
invoked to GL and all of the other character sets invoked to GR is “file system
safe” in 8-bit clean systems. This is more or less the definition of the EUC
variant of ISO 2022.

Some encodings which do not conform and thus often cause problems in
software not specifically prepared for them are Shift JIS, Big 5, VISCII and KOI-8.
Shift JIS in particular annoys me, because I dual-boot Linux and Windows 95 for
Japanese OCR, conversion of Microsoft Word documents to plaintext and
FreeCell, and directory listings with Japanese in them are invariably messed up.
Fortunately, I find yet to have a reason to try to access a file named in Japanese.
Kernel patches are available which help deal with this, but they are unofficial
and will stay that way because they are inherently dangerous. That is, they
work with Japanese most but not all of the time, and they will not handle non-
Japanese 8-bit encodings correctly.

Internet Messaging

One of the earliest and most important applications for the Internet is
messaging, either direct to recipients (electronic mail) or broadcast (Usenet
newsgroups). From the internationalization point of view, these are basically
the same; internationalization doesn't care about the transmission mechanism,
only how the content is handled.

Because messaging was an early application, it assumes a rather restricted
environment. In particular, it assumes the data stream is limited to 7-bit bit-
strings, and one cannot even be sure that all ASCII characters will be
transmitted without error. In particular, if a message originates in the UNIX
world, is passed through BITNET, i.e., EBCDIC encoding and back to UNIX, some

characters are likely to be corrupted. Of course, these days such corruption is
unlikely, but when the standards were designed, it was commonplace. Now
these restrictions are defined in standards and widely implemented in
software, so they are likely to continue for the foreseeable future, even though
the hardware and software for Internet transmission of data is extremely
reliable.

The Internet mail transmission protocol (SMTP) is defined in RFC-821. The main
provision of interest is that the transmission channel must transmit all 128
ASCII characters properly. 8-bit-clean channels are encouraged, but implicitly 7-
bit characters are the norm. Internet messages are standardized in RFC-822 for
electronic mail and RFC-1036 for Usenet. RFC-1036 adopts RFC-822 nearly in
full, so I will refer to these three standards together as RFC-822.

RFC-822 is intended first of all to be compatible with RFC-821. The content of a
message is divided into the part that is relevant to the mail transport system,
the headers, and the part that is irrelevant to transporting the message, the
body. RFC-822 allows users to send 8-bit content in the body at their own risk,
but the headers must be in a 7-bit code, in particular, ASCII. This is rather
annoying to non-English-speaking users. To permit non-English text in subject
headers and in comments (particularly full names associated with addresses)
and to provide reliable transport for non-ASCII body content, both non-English
text and binary data of various kinds, the Multipurpose Internet Mail Extension
suite of protocols was defined. Today, this standard occupies no less than five
RFCs (2045-2049). We will be interested only in those parts related to
internationalization.

MIME Transfer Encodings

The MIME transfer encodings are like the UCS transformation formats
discussed above. They allow arbitrary content to be expressed in a way that will
not choke the transmission channel or be damaged by it. MIME defines two
transfer encodings, quoted printable and BASE64.

The quoted-printable encoding is very simple. Any octet may be represented by
its hexadecimal code, preceded by an equals sign. So a space character is
represented as =20 and the Spanish small enye (ñ) is =F1. The Latin capital
letter A is =41. However, in general these are used only in three circumstances.
First, since the equal sign is an escape character, it must be represented by
=3D. Second, some software strips trailing whitespace, in particular on systems
with record-oriented storage that do not use control characters to represent
line breaks. A space or tab that ends a line will be encoded =20 or =09,
respectively. This is important to the signature convention used on Usenet
newsgroups. Finally, non-ASCII octets including most control characters will be

encoded. Thus, the quoted-printable encoding is intended for applications,
such as Western European languages, where most characters come from the
basic Latin (i.e., ASCII) set. In fact, one quickly learns to accurately read quoted
printable text without decoding it.

Note that this is a transfer encoding. It is a purely mechanical transformation
and provides no information about the intended meaning of the character.
Although ñ is one interpretation of =F1, there are many others including a
different one for each of the ten ISO 8859 character sets. Quoted printable
encoding provides no indication of which is intended.

The BASE64 encoding is intended to be a robust encoding for arbitrary binary
data, including images and audio. However, it is also commonly used for
languages like Japanese where interpreting each octet separately as an ASCII
character is illegible without decoding. It is more efficient than quoted
printable, using only 33% more space than the original text, where each quoted
character uses three times as much space as the unencoded octet. BASE64 is
similar to the famous uuencode format long used in UNIX for the same
purpose, but the characters used for the encoding are limited to the 52 Latin
letters, the 10 decimal digits, the plus sign and slash.

The equals sign is also used, as padding. The reason for this choice is that base
64 is a convenient radix for byte-oriented encoding, since four base-64 digits
can encode 24 bits or 3 octets. The characters chosen are passed intact by all
known systems, which is not true of some of the punctuation marks used in the
uuencode algorithm. The encoding algorithm is obvious:

1. Break up the data stream into groups of three octets. The last group may
have one or two octets and will be treated specially.

2. For each group of three, concatenate the octets into a 24-bit string, then
break it into four 6-bit groups. Interpret each as a 6-bit binary integer and
index into the table above. This results in a group of four base-64 digits.
Add them to the output.

3. If there is a remaining group, it has either one or two octets in it. Add one
or two null octets to complete the group of three. Now treat it as in Step 2,
except that if there was one octet in the group, add the first two base-64
digits to the output and pad the end with two equals signs to make a
group of four. If there were two octets in the final group, add the first
three base-64 digits to the output and pad with a final equals sign to make
a group of four.

Notice that by using the equals sign it is always possible to exactly decode the
original text; there will not even be a spurious null character at the end.

Furthermore, the algorithm is very fast and space-efficient, given the
restrictions.

MIME-specific Headers

A message conforming to the MIME standard must have a version header of
the form

MIME-Version: 1.0

Some mailers are sufficiently picky as to refuse to do MIME processing on mail
lacking a valid MIME-Version header. This would be amusing, except for the fact
that many mailers either do not implement the MIME functions correctly,
produce an illegal MIME-Version header, or fail to insert the MIME-Version
header at all.

The only version of the MIME header formats is 1.0. The MIME standard has
undergone several revisions and expansions, but the basic format has
remained unchanged at version 1.0. These revisions and standards have added
new values for some of the parameters and specified interpretations for some
ambiguous areas, but the syntax is unchanged. Case is irrelevant, in both the
header tags and the values. The style of capitalization used below is more or
less conventional, but not required.

One way to protect the content, or at least check that it has not been truncated,
is to provide a Content-Length header. This is allowed by the MIME standard.
The general type of encoding of the body is stated in the content-transfer-
encoding header. The default is

Content-Transfer-Encoding: 7-bit

Other allowed values are “quoted-printable” and “base64” (both implicitly 7-bit)
and “8-bit”.

Next, the content type of the body is specified. In most messages it will be plain
text, specified as

Content-Type: text/plain

Other text types commonly found in mail these days are text/rich and text/

html. A forwarded message (with no prefatory comments) may have content
type specified as message/rfc-822. Messages can also be multipart. This is
commonly used to add multimedia attachments, but can also be used to break
up the body into components in different languages.

The MIME standard specifies that the character set is ASCII unless otherwise
noted. RFC-822 requires that all headers be ASCII, so the MIME character set
specification applies only to the body of the message. This specification is done
using the charset parameter of the content type header. The default could be
explicitly specified as

Content-Type: text/plain;charset=us-ascii

Note that the optional parameters are specified in keyword=value form. The
correct way to specify ASCII is “us-ascii”, because that is the preferred form as
registered with the IANA. A list of valid character sets for MIME is at http://
www.hunnysoft.com/mime/. Europeans will commonly use

Content-Transfer-Encoding: 8-bit
Content-Type: text/plain;charset=iso-8859-1

The Japanese standard for electronic messages is a version of ISO 2022 called
ISO-2022-JP. In fact, this encoding needs to be extended only slightly. It can be
used for Chinese and Korean as well and even as a multilingual encoding. The
extended version is known as ISO-2022-JP-2 or ISO-2022-INT.

MIME-encoded Words: Non-ASCII Text in Headers

The MIME standard also provides a mechanism for putting non-ASCII text in
headers. RFC-822 makes this illegal, so use of this mechanism will result in
gibberish being displayed by mail programs that do not implement MIME.
However, most mail programs today are MIME-aware, so this should not
present any problems. If your correspondents complain, tell them to get a
MIME-aware mailer.

The mechanism is simple. Non-ASCII text is encoded using either quoted-
printable encoding or BASE64 encoding according to convenience, and bundled
up into an encoded word. The reason it must be bundled into an encoded word
is that the Content-Type header applies to the body, and if the body is
multipart, there will be no charset parameter. Using a special header to control
the format of headers seems silly, so the encoded word itself will contain the
necessary character set information.

The format of an encoded word begins with the characters =?, continues with
the name of the encoding used, the character ?, either the letter Q (for “quoted
printable”) or the letter B (for BASE64), the character ? again, the encoded text,
and finally the characters ?=. For example, the French word “voil<\#226>” is
encoded =?ISO-8859-1?Q?V=F3il=E0?=. Incredibly inefficient, of course, but
these will be used only a few times per message. Note that one extra restriction
is put on quoted printable encoding, not present in the basic encoding: any
question marks in the encoded text must be encoded. Otherwise, the sequence

<question mark><encoded octet> would be interpreted as the end of the
encoded word.

Content Negotiation

As yet, there are no general standards, but HTTP 1.1 is an example of a protocol
that provides facilities for the browser and server to negotiate the type of
content to be provided. In particular, the browser can automatically specify the
language and preferred encoding of content. The server may ignore this, if
content in that language is unavailable. This method is certainly more
convenient for users than providing links to translations in various languages.

Another example of content negotiation is provided by the MIME multipart/
alternative format. This format allows the same content to be presented in
several ways. For example, a mail message can be formatted as both plain text
and as HTML. Many UNIX mail user agents do not understand HTML, but
Netscape certainly does. This allows “dumb” MUAs (or people who hate HTML
e-mail) with a minimal understanding of MIME to read the e-mail as plain text,
while those using Netscape to read their mail get the (dubious, in my opinion)
benefit of the HTML presentation.

Conclusion

These two articles have presented an overview of the principles of
internationalization. It hasn't been brief, but it is hardly complete or
comprehensive. Linux is now in fairly good shape with respect to the basic
facilities for internationalization with the wide dissemination of GNU libc
version 2 (usually known on Linux systems as glibc or libc6).

A few issues still remain to be worked out, especially with respect to Asian
languages. We can expect the standards to become more comprehensive over
time. For example, locales may deal with line wrapping conventions, or the
locale model may be extended to support multilingual applications directly.

However, the main effort today must be on the part of applications
programmers and multilingual volunteers. Applications programmers need to
use the POSIX locale facilities and GNU gettext to internationalize their
programs. Multilingual volunteers should join the GNU translation project and
help translate message catalogs for their favorite programs.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/060/3327s1.html

Stephen Turnbull (turnbull@sk.tsukuba.ac.jp) is an economist teaching and
researching in Japan. He is excited about the way the Open-Source movement
is turning conventional economics on its head, but is too busy playing with his
Linux systems to do much economic analysis.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/060/toc060.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Focus
	Features
	Forum
	Reviews
	Columns
	Departments
	Strictly On-line
	From the Editor
	Marjorie Richardson
	Hardware News

	Product Review: Corel's NetWinder
	Marcel Gagné
	Specs
	The Roundup
	First Impressions
	WebFront & Administration
	A Few Bumps in the Road
	Corel Responds
	Final Impressions

	FlowNet: An Inexpensive High-Performance Network
	Erann Gat
	Mike Ciholas
	Network Background
	Shared-Media Ethernet
	Switched Ethernet
	Quality of Service
	The FlowNet Architecture
	Distributed Switching
	Development
	Conclusions

	Using Linux with Network Computers
	Brian Vincent

	Network Administration with AWK
	Juergen Kahrs
	Finding Who is Logged In
	The Coke Machine
	The Weather in Germany
	Reading the Ticker
	Advanced Applications
	Microsoft Windows
	Trade-Offs

	Linux Training
	Scott Schad

	Blender
	Ben Crowder
	Blender History
	Getting Blender
	System Requirements
	Installing Blender
	Basic Usage
	Your First Scene
	The Future of Blender

	LJ Interviews John Ousterhout
	Marjorie Richardson

	Linux Certification for the Software Professional
	Tobin P. Maginnis
	Why a Linux Certificate?
	The Certification Process
	Key Certification Benefits
	It Is Time for Linux Certification
	The Linux Certificate
	Examination Topics
	Exam Administration
	Milestones for the Linux Certificate
	Conclusion

	Arkeia
	Charles Curley

	Xi Graphics maXimum cde/OS v1.2.3, Executive Edition
	Jeff Alami
	Installation
	Configuration
	Features
	Documentation and Support
	Conclusion

	Book Review: LINUX for Dummies, Quick Reference, 2nd Edition
	Harvey Friedman
	LINUX for Dummies, Quick Reference, 2nd
 Edition

	Conix 3-D Explorer
	Michael J. Hammel
	Installation
	Documentation
	Running Mathematica/3-D Explorer
	OpenGL 3-D Support
	Programming
	Summary

	Perl Cookbook
	James Lee

	grep: Searching for Words
	Jan Rooijackers
	The Syntax
	grep and speed
	Conclusion

	Linux 2.2 and the Frame-Buffer Console
	Joseph Pranevich
	Part I. What We Have Today
	SVGALib (SVGA Library)
	The X Window System
	Non-i386 Linux
	Security Implications
	Part II. Linux 2.2 Implementation
	Frame Buffers
	Security Implications
	Part III. Advantages of the Frame Buffer
	Single X Server
	Part IV. Disadvantages of the Frame-Buffer
Driver
	Lack of Drivers
	Lack of Acceleration
	Part V. Other Notes
	VesaFB

	Writing Modules for mod_perl
	Reuven M. Lerner
	Perl*Handlers
	Writing a Simple PerlHandler
	Listing 1. PerlHandler Module
	Constants and Return Codes
	Configuring Apache
	Installing a PerlHandler Module
	Results
	Another Module
	Reducing Memory Usage
	Conclusion

	Security Research Laboratory and Education Center
	Sofie Nystrom
	Fighting Information Warfare with
Education
	One of a Kind
	A Different Approach to Intrusion
Detection
	Security Archive
	Tripwire
	Underfire
	Next Generation Authentication
	Enhancing the Linux Audit Trail
	Vulnerabilities Database and Testing
	Future

	Windows/Linux Dual Boot
	Vince Veselosky
	Making Room for Linux
	What You Need
	FAT32 Support Requirements
	Preparing Your Drive
	Using FIPS
	Linux Install Tips for Large Drives
	Planning your Partitions
	Booting with LILO
	Booting from Floppy
	Booting with Loadlin
	Conclusion

	Focus on Software
	David A. Bandel
	gtksamba:
	TkSmb:
	smb2www:
	LinPopUp:
	tkchooser2:
	gftp:
	IglooFTP:
	xrmftp:

	Good Ol' sed
	Hans de Vreught
	Syntax
	Example
	Insert, Append and Change
	Next and Quit
	Advanced

	Letters to the Editor
	Various
	LJ Enterprise
Solutions
	LJ in Brunei
	Calendar
	Misstatement by LJ
Editor
	Re: Linux in Lebanon
	Csound Article
	Non-root Shutdown Possible with sudo
	Name Misspelling
	Linux for Macintosh

	More Letters to the Editor
	business plan
	Invitation to Join Freedom of Choice Project
	Great Article
	Re: University of Toronto WearComp Linux Project (Feb 99)
	Corrections
	Re: BTS
	letter to editor
	Intel Red-hat for the LAST time
	BTS correction: shutting down a Linux machine
	Letter to the Editor ...
	Article Suggestions
	No more whinings, please.
	Intel and RH
	re: Dear ljeditor. This little poem might amuse your readers....
	Is Linux getting too commercial?
	Re: Small Linux Machines (CyberFlex _isn't_ a Linux machine)
	Reply to 8/98 Article!
	spelling error(s).
	article corrections
	Freeware vs. mega$ware
	Advertising
	Issue 59 editorial comments
	popular does not equal good
	editors reply

	A Look to the Future
	Phil Hughes
	The Community Evolves
	Two Communities?

	New Products
	Ellen Dahl
	Cyclades-PR4000
	PerlDirect
	ICS
	Linux Network Server Package
	CSM Proxy Plus for Linux Version 4.1
	Empress RDBMS v8.10
	M-Cluster
	LynxArray and LynxNSS
	GO-Global, GO-Between, GO-Joe
	Linux Main Memory Database Benchmark
	Magnate Internet Store
	LinuxCare, Inc.

	Best of Technical Support
	Various
	Accessing /dev/fd0
	Hidden config File in X
	Upgrading an Old Kernel
	Wrong Date
	When Not to be root
	Shells and a.out vs. ELF
	Paging or Performance Questions

	DECnet Network Protocol
	Steve Whitehouse
	Patrick Caulfield
	The DECnet Family of Protocols
	Kernel Configuration
	Setting Up Ethernet Cards
	The File Utilities
	Files and File Names
	Other Utilities
	A Tour of the Kernel Sources
	Main Kernel Code Paths
	The Future

	The Xxl Spreadsheet Project
	Vincent Granet
	A Short History of Spreadsheets
	Design
	Characteristics of Xxl
	Perspectives
	Conclusion

	Network Programming with Perl
	James Lee
	Introduction
	Viewing Module Documentation
	A Simple Server
	A Simple Client
	Perl Makes Life Easy
	A Simple Server Using IO::Socket
	A Simple Client Using IO::Socket
	Bidirectional Communication
	A Forking Client
	A Forking Server
	Thread Programming in Perl5.005
	Net::Ping Module
	Net::Telnet Module
	Net::FTP Module
	Archive a Web Site
	Summary

	Linux in Enterprise Network Management
	Leo Lahteenmaki
	Linux Network Management Tools
	Linux in the Corporate World
	Summary

	Alphabet Soup: The Internationalization of Linux, Part 2
	Stephen Turnbull
	POSIX
	POSIX Internationalization Levels
	Character Sets
	ASCII
	The ISO 8859 Family of Character Sets
	Unicode and the ISO-10646 Universal Character
Sets
	National Standard and Private Character
Sets
	Character Set Extension: ISO 2022
	Internet Messaging
	MIME Transfer Encodings
	MIME-specific Headers
	MIME-encoded Words: Non-ASCII Text in Headers
	Content Negotiation
	Conclusion

